Nikkomycin Z counteracts Rylux BSU and Congo red inhibition of Saccharomyces cerevisiae growth but does not prevent formation of aberrant cell walls
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
11097025
DOI
10.1007/bf02825658
Knihovny.cz E-zdroje
- MeSH
- aminoglykosidy * MeSH
- antibakteriální látky farmakologie MeSH
- barvicí látky farmakologie MeSH
- benzensulfonáty farmakologie MeSH
- buněčná stěna účinky léků metabolismus ultrastruktura MeSH
- chitin biosyntéza MeSH
- elektronová mikroskopie MeSH
- fluorescenční barviva farmakologie MeSH
- Kongo červeň farmakologie MeSH
- Saccharomyces cerevisiae účinky léků růst a vývoj metabolismus ultrastruktura MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- aminoglykosidy * MeSH
- antibakteriální látky MeSH
- barvicí látky MeSH
- benzensulfonáty MeSH
- chitin MeSH
- fluorescenční barviva MeSH
- Kongo červeň MeSH
- nikkomycin MeSH Prohlížeč
- Rylux BSU MeSH Prohlížeč
Rylux BSU and congo red bind to chitin, interfere with proper cell-wall assembly, and stimulate chitin synthesis by increasing, most probably, chitin synthase 3 (ChS3) levels in Saccharomyces cerevisiae. On the other hand, the antibiotic nikkomycin Z inhibits chitin synthesis competitively. As ChS3 is the critical target of nikkomycin Z, its effect was tested in cells inhibited in growth by Rylux BSU or Congo red. Nikkomycin Z counteracted this inhibition but did not counteract aberrant cell-wall formation. These results indicate that chitin synthesis stimulation is the key step in Rylux BSU and congo red inhibition and support the idea that increase in chitin synthesis represents a compensatory response to damaged cell-wall structure. As Rylux BSU and congo red bind to newly synthesized chitin, further damage is caused in the wall and the response works in this case contrariwise. Nikkomycin Z breaks this vicious circle by counteracting the chitin synthesis stimulation.
Zobrazit více v PubMed
J Bacteriol. 1988 Apr;170(4):1945-9 PubMed
J Biochem. 1967 Aug;62(2):276-8 PubMed
Folia Microbiol (Praha). 1990;35(5):437-42 PubMed
Arch Biochem Biophys. 1994 Apr;310(1):6-15 PubMed
Arch Microbiol. 1994;161(4):340-4 PubMed
J Bacteriol. 1994 Sep;176(18):5857-60 PubMed
Yeast. 1994 Aug;10(8):1019-30 PubMed
J Gen Microbiol. 1983 May;129(5):1577-82 PubMed
Arch Microbiol. 1992;158(2):115-26 PubMed
Science. 1997 Mar 21;275(5307):1781-4 PubMed
Genes Dev. 1995 Jul 1;9(13):1559-71 PubMed
Antimicrob Agents Chemother. 1997 Sep;41(9):2026-8 PubMed
J Cell Biol. 1980 Nov;87(2 Pt 1):442-50 PubMed
Microbiol Rev. 1995 Sep;59(3):345-86 PubMed
EMBO J. 1996 Sep 16;15(18):5001-13 PubMed
Biochem J. 1966 Nov;101(2):36C-38C PubMed
J Biol Chem. 1995 Dec 15;270(50):30157-61 PubMed
J Bacteriol. 1985 Sep;163(3):1180-5 PubMed
Antimicrob Agents Chemother. 1990 Apr;34(4):587-93 PubMed
J Antibiot (Tokyo). 1990 Jan;43(1):43-8 PubMed
J Bacteriol. 1997 Jan;179(2):463-9 PubMed
Mycoses. 1993 Jul-Aug;36(7-8):239-42 PubMed