Nikkomycin Z counteracts Rylux BSU and Congo red inhibition of Saccharomyces cerevisiae growth but does not prevent formation of aberrant cell walls
Language English Country United States Media print
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
11097025
DOI
10.1007/bf02825658
Knihovny.cz E-resources
- MeSH
- Aminoglycosides * MeSH
- Anti-Bacterial Agents pharmacology MeSH
- Coloring Agents pharmacology MeSH
- Benzenesulfonates pharmacology MeSH
- Cell Wall drug effects metabolism ultrastructure MeSH
- Chitin biosynthesis MeSH
- Microscopy, Electron MeSH
- Fluorescent Dyes pharmacology MeSH
- Congo Red pharmacology MeSH
- Saccharomyces cerevisiae drug effects growth & development metabolism ultrastructure MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Aminoglycosides * MeSH
- Anti-Bacterial Agents MeSH
- Coloring Agents MeSH
- Benzenesulfonates MeSH
- Chitin MeSH
- Fluorescent Dyes MeSH
- Congo Red MeSH
- nikkomycin MeSH Browser
- Rylux BSU MeSH Browser
Rylux BSU and congo red bind to chitin, interfere with proper cell-wall assembly, and stimulate chitin synthesis by increasing, most probably, chitin synthase 3 (ChS3) levels in Saccharomyces cerevisiae. On the other hand, the antibiotic nikkomycin Z inhibits chitin synthesis competitively. As ChS3 is the critical target of nikkomycin Z, its effect was tested in cells inhibited in growth by Rylux BSU or Congo red. Nikkomycin Z counteracted this inhibition but did not counteract aberrant cell-wall formation. These results indicate that chitin synthesis stimulation is the key step in Rylux BSU and congo red inhibition and support the idea that increase in chitin synthesis represents a compensatory response to damaged cell-wall structure. As Rylux BSU and congo red bind to newly synthesized chitin, further damage is caused in the wall and the response works in this case contrariwise. Nikkomycin Z breaks this vicious circle by counteracting the chitin synthesis stimulation.
See more in PubMed
J Bacteriol. 1988 Apr;170(4):1945-9 PubMed
J Biochem. 1967 Aug;62(2):276-8 PubMed
Folia Microbiol (Praha). 1990;35(5):437-42 PubMed
Arch Biochem Biophys. 1994 Apr;310(1):6-15 PubMed
Arch Microbiol. 1994;161(4):340-4 PubMed
J Bacteriol. 1994 Sep;176(18):5857-60 PubMed
Yeast. 1994 Aug;10(8):1019-30 PubMed
J Gen Microbiol. 1983 May;129(5):1577-82 PubMed
Arch Microbiol. 1992;158(2):115-26 PubMed
Science. 1997 Mar 21;275(5307):1781-4 PubMed
Genes Dev. 1995 Jul 1;9(13):1559-71 PubMed
Antimicrob Agents Chemother. 1997 Sep;41(9):2026-8 PubMed
J Cell Biol. 1980 Nov;87(2 Pt 1):442-50 PubMed
Microbiol Rev. 1995 Sep;59(3):345-86 PubMed
EMBO J. 1996 Sep 16;15(18):5001-13 PubMed
Biochem J. 1966 Nov;101(2):36C-38C PubMed
J Biol Chem. 1995 Dec 15;270(50):30157-61 PubMed
J Bacteriol. 1985 Sep;163(3):1180-5 PubMed
Antimicrob Agents Chemother. 1990 Apr;34(4):587-93 PubMed
J Antibiot (Tokyo). 1990 Jan;43(1):43-8 PubMed
J Bacteriol. 1997 Jan;179(2):463-9 PubMed
Mycoses. 1993 Jul-Aug;36(7-8):239-42 PubMed