Analysis of large and small samples of biochemical and clinical data
Jazyk angličtina Země Německo Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
11256802
DOI
10.1515/cclm.2001.013
Knihovny.cz E-zdroje
- MeSH
- algoritmy MeSH
- dospělí MeSH
- haptoglobiny metabolismus MeSH
- klinická chemie metody MeSH
- lidé MeSH
- novorozenec MeSH
- pregnenolon krev MeSH
- pupečník metabolismus MeSH
- software MeSH
- statistické modely MeSH
- statistika jako téma metody MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- novorozenec MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- haptoglobiny MeSH
- pregnenolon MeSH
Statistical software often offers a list of various descriptive statistics of location and scale, but rarely selects an efficient estimate that is statistically adequate for an actual univariate sample. The sample interval estimate for a specified degree of uncertainty seems to be more meaningful if it covers an unknown value of the population parameter. The concept of an interval estimate in medicine is then used for medical decision-making. The proposed methodology, which uses the S-Plus algorithm for biochemical, biological and clinical data analysis contains the following steps: (i) Exploratory data analysis identifies basic statistical features and patterns of the data, the distributions of which are mostly non-normal, non-homogeneous and often corrupted by outliers. (ii) Sample assumptions about data, independence of sample elements, normality and homogeneity are examined. (iii) Power transformation and the Box-Cox transformation to improve sample symmetry and stabilize the spread. (iv) Classical and robust statistics for both large (n>30) and medium-sized samples (15
Citace poskytuje Crossref.org