Mitochondria--tool for taxonomic identification of yeasts from Saccharomyces sensu stricto complex
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
11271832
DOI
10.1007/bf02817406
Knihovny.cz E-zdroje
- MeSH
- DNA fungální analýza MeSH
- hybridizace nukleových kyselin MeSH
- messenger RNA analýza MeSH
- mitochondriální DNA analýza MeSH
- mitochondrie genetika metabolismus MeSH
- mutace MeSH
- polymerázová řetězová reakce MeSH
- polymorfismus genetický MeSH
- Saccharomyces cerevisiae klasifikace ultrastruktura MeSH
- Saccharomyces klasifikace ultrastruktura MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- DNA fungální MeSH
- messenger RNA MeSH
- mitochondriální DNA MeSH
Mitochondrial genomes of Saccharomyces and close relatives previously used for transplacement of mitochondria to S. cerevisiae were examined. The origins of replication in mitochondrial DNA, the presence of nuclear and mitochondrial polymorphic loci and the ability to produce mitochondrial respiration-deficient mutants were used to reclassify some collection yeasts and to assign others into four separate subgroups. The first included isolates identical to Saccharomyces cerevisiae (S. italicus, S. oviformis, S. chevalieri and S. capensis) which possess 5 or more replication origins. The second group consists of S paradoxus (var douglasii) mitochondrial genome with the equal number of ori sequences but incompatible mitochondria. The third group represents Saccharomyces sensu stricto petite-positive species (S. carlsbergensis, S. heterogenicus, S. uvarum, S. willianus) with 1-2 origins of replication significantly different from S. cerevisiae. In addition, the locus between tRNA(fMet) and tRNA(Pro) is about one-half of the 1400 bp members of S. cerevisiae complex. The last group includes isolates that do not belong to Saccharomyces sensu stricto group as they are petite-negative and devoid of any S. cerevisiae-like replication origins.
Zobrazit více v PubMed
Eur J Biochem. 1987 Dec 15;169(3):527-37 PubMed
Methods Enzymol. 1991;194:169-82 PubMed
FEBS Lett. 1998 Dec 4;440(3):325-31 PubMed
Mol Gen Genet. 1991 Apr;226(1-2):233-40 PubMed
EMBO J. 1987 Dec 20;6(13):4197-203 PubMed
Mol Cell Biol. 1996 Jul;16(7):3429-36 PubMed
Curr Genet. 1981 Sep;4(1):7-12 PubMed
Curr Genet. 1995 Jun;28(1):39-53 PubMed
Gene. 1993 Feb 28;124(2):153-63 PubMed
J Med Entomol. 1993 Jan;30(1):228-32 PubMed
Antonie Van Leeuwenhoek. 1998 May;73(4):331-71 PubMed
Methods Enzymol. 1991;194:94-110 PubMed
Gene. 1984 Dec;32(3):439-57 PubMed
Methods Enzymol. 1991;194:149-65 PubMed
Microbiol Rev. 1978 Mar;42(1):161-93 PubMed
Curr Genet. 1997 Jul;32(1):24-6 PubMed
J Biol Chem. 1991 Oct 15;266(29):19154-7 PubMed
Gene. 1986;41(1):1-22 PubMed
Methods Enzymol. 1991;194:302-18 PubMed
Yeast. 1997 Sep 30;13(12):1099-133 PubMed
Int J Syst Bacteriol. 1999 Oct;49 Pt 4:1933-8 PubMed
Nucleic Acids Res. 1991 Sep 11;19(17):4773 PubMed
Int J Syst Bacteriol. 1998 Jul;48 Pt 3:1015-24 PubMed