Penicillin V production by Penicillium chrysogenum in the presence of Fe3+ and in low-iron culture medium
Language English Country United States Media print
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
11501399
DOI
10.1007/bf02873590
Knihovny.cz E-resources
- MeSH
- Glutathione Reductase metabolism MeSH
- Culture Media MeSH
- Penicillin V metabolism MeSH
- Penicillium chrysogenum metabolism MeSH
- Ferrous Compounds metabolism MeSH
- Iron metabolism MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Glutathione Reductase MeSH
- Culture Media MeSH
- Penicillin V MeSH
- Ferrous Compounds MeSH
- Iron MeSH
Late-exponential-phase Penicillium chrysogenum mycelia grown in a complex medium possessed an intracellular iron concentration of 650 mumol/L (2.2 +/- 0.6 mumol per g mycelial dry mass). This iron reserve was sufficient to ensure growth and antibiotic production after transferring mycelia into a defined low-iron minimal medium. Although the addition of Fe3+ to the Fe-limited cultures increased significantly the intracellular iron levels the surplus iron did not influence the production of penicillin V. Supplements of purified major P. chrysogenum siderophores (coprogen and ferrichrome) into the fermentation media did not affect the beta-lactam production and intracellular iron level. Neither 150 nor 300 mumol/L extracellular Fe3+ concentrations disturbed the glutathione metabolism of the fungus, and increased the oxidative stress caused by 700 mmol/L H2O2. Nevertheless, when iron was applied in the FeII oxidation state the oxidative cell injuries caused by the peroxide were significantly enhanced.
See more in PubMed
Methods Enzymol. 1983;91:95-119 PubMed
Biometals. 2000 Mar;13(1):37-46 PubMed
Mol Cell Biol. 1981 Feb;1(2):94-100 PubMed
J Biotechnol. 1999 Oct 8;75(2-3):173-85 PubMed
Antimicrob Agents Chemother. 1985 Mar;27(3):380-7 PubMed
J Biol Chem. 1993 Jan 5;268(1):665-71 PubMed
Free Radic Biol Med. 1997;23(5):809-14 PubMed
J Chem Technol Biotechnol. 1992;55(3):233-8 PubMed
Appl Microbiol Biotechnol. 1995 Mar;42(6):945-50 PubMed
J Pharm Pharmacol. 1972 Oct;24(10):790-4 PubMed
Biometals. 1999 Dec;12(4):301-6 PubMed
Can J Microbiol. 1986 Jun;32(6):473-80 PubMed
Methods Enzymol. 1985;113:548-55 PubMed
Arch Biochem Biophys. 1984 Jan;228(1):1-12 PubMed
Free Radic Res. 1999 Feb;30(2):125-32 PubMed
Biotechnol Bioeng. 1998 Dec 20;60(6):761-7 PubMed
Folia Microbiol (Praha). 1999;44(6):587-624 PubMed
J Basic Microbiol. 1997;37(3):181-6 PubMed
J Bacteriol. 1975 Sep;123(3):837-42 PubMed
J Bacteriol. 1950 Jan;59(1):51-60 PubMed
Physiological and morphological changes in autolyzing Aspergillus nidulans cultures