Physiological and morphological changes in autolyzing Aspergillus nidulans cultures

. 2004 ; 49 (3) : 277-84.

Jazyk angličtina Země Spojené státy americké Médium print

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid15259768

Physiological and morphological changes in carbon-limited autolyzing cultures of Aspergillus nidulans were described. The carbon starvation arrested conidiation while the formation of filamentous and "yeast-like" hyphal fragments with profoundly altered metabolism enabled the fungus to survive the nutritional stress. The morphological and physiological stress responses, which maintained the cellular integrity of surviving hyphal fragments at the expense of autolyzing cells, were highly concerted and regulated. Moreover, sublethal concentrations of the protein synthesis inhibitor cycloheximide or the mitochondrial uncoupler 2,4-dinitrophenol completely blocked the autolysis. In accordance with the propositions of the free-radical theory of ageing reactive oxygen species accumulated in the surviving fragments with a concomitant increase in the specific superoxide dismutase activity and a continuous decrease in cell viability. Glutathione was degraded extensively in carbon-starving cells due to the action of gamma-glutamyltranspeptidase, which resulted in a glutathione-glutathione disulfide redox imbalance during autolysis.

Zobrazit více v PubMed

Biol Rev Camb Philos Soc. 1990 Aug;65(3):375-98 PubMed

Mycopathologia. 1976 Dec 10;60(1):45-9 PubMed

Folia Microbiol (Praha). 2001;46(2):127-32 PubMed

J Gen Microbiol. 1970 Feb;60(2):239-49 PubMed

Physiol Plant. 2001 Jul;112(3):327-333 PubMed

Exp Gerontol. 2000 Feb;35(1):63-70 PubMed

Drugs Aging. 1993 Jan-Feb;3(1):60-80 PubMed

Free Radic Res. 1999 Feb;30(2):125-32 PubMed

Cell Biol Int Rep. 1984 May;8(5):373-7 PubMed

Methods Enzymol. 1985;113:499-504 PubMed

Arch Biochem Biophys. 1984 Jan;228(1):1-12 PubMed

Genetics. 1965 Jul;52(1):233-46 PubMed

FEBS Lett. 1974 May 1;41(2):283-6 PubMed

Mol Microbiol. 2001 Dec;42(5):1259-67 PubMed

Free Radic Res. 2001 Apr;34(4):405-16 PubMed

Nat Biotechnol. 1998 Jan;16(1):5 PubMed

Mech Ageing Dev. 2002 Feb;123(4):245-60 PubMed

Clin Chem. 1992 Feb;38(2):298-302 PubMed

Respir Physiol. 2001 Nov 15;128(3):379-91 PubMed

Crit Rev Biotechnol. 2002;22(1):1-14 PubMed

FEMS Microbiol Lett. 1990 May;57(1-2):67-72 PubMed

Enzyme Microb Technol. 2000 Jun 1;26(9-10):737-742 PubMed

Folia Microbiol (Praha). 1999;44(6):587-624 PubMed

Free Radic Biol Med. 1997;23(5):809-14 PubMed

Biochim Biophys Acta. 1976 Oct 11;445(3):558-66 PubMed

Biotechnol Bioeng. 1994 Aug 20;44(5):655-60 PubMed

Microbiology. 1998 May;144 ( Pt 5):1319-30 PubMed

Mol Aspects Med. 2001 Aug-Oct;22(4-5):217-46 PubMed

Adv Microb Physiol. 1993;34:239-301 PubMed

Biochem Biophys Res Commun. 1999 Oct 5;263(3):646-51 PubMed

Microbiology. 1997 Jun;143 ( Pt 6):1885-9 PubMed

Mycopathologia. 1982 Dec 27;80(3):147-55 PubMed

J Biol Chem. 1973 May 25;248(10):3441-5 PubMed

Biochem J. 2001 Nov 1;359(Pt 3):631-7 PubMed

Acta Biochim Pol. 1999;46(2):249-53 PubMed

Folia Microbiol (Praha). 2003;48(2):149-55 PubMed

Mol Cell Biol. 2003 Jan;23(1):163-77 PubMed

Free Radic Biol Med. 2000 Mar 1;28(5):659-64 PubMed

J Gen Appl Microbiol. 2001 Aug;47(4):201-211 PubMed

Acta Microbiol Immunol Hung. 2003;50(1):67-76 PubMed

J Gen Microbiol. 1983 Apr;129(4):965-71 PubMed

Methods Enzymol. 1984;105:457-64 PubMed

Biotechnol Bioeng. 1998 Sep 20;59(6):762-75 PubMed

J Lab Clin Med. 1949 Mar;34(3):428-33 PubMed

Methods Enzymol. 1985;113:548-55 PubMed

J Biol Chem. 1996 May 24;271(21):12275-80 PubMed

Exp Gerontol. 2001 Jul;36(7):995-1024 PubMed

Exp Gerontol. 1999 Jun;34(3):293-303 PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...