Cytochromes P450 and experimental models of drug metabolism
Jazyk angličtina Země Velká Británie, Anglie Médium print
Typ dokumentu časopisecké články, práce podpořená grantem, přehledy
PubMed
12169204
PubMed Central
PMC6740233
DOI
10.1111/j.1582-4934.2002.tb00186.x
PII: 006.002.04
Knihovny.cz E-zdroje
- MeSH
- biologické markery MeSH
- druhová specificita MeSH
- jaterní mikrozomy enzymologie MeSH
- krysa rodu Rattus MeSH
- léčivé přípravky metabolismus MeSH
- lidé MeSH
- Macaca fascicularis MeSH
- Macaca mulatta MeSH
- modely u zvířat * MeSH
- prasata MeSH
- psi MeSH
- substrátová specifita MeSH
- systém (enzymů) cytochromů P-450 metabolismus MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- lidé MeSH
- psi MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- biologické markery MeSH
- léčivé přípravky MeSH
- systém (enzymů) cytochromů P-450 MeSH
For the development of new drugs, evaluation of drug-drug interactions with already known compounds, as well as for better understanding of metabolism pathways of various toxicants and pollutants, we studied the drug metabolism mediated by cytochromes P450. The experimental approach is based on animal drug-metabolising systems. From the ethical as well as rational reasons, the selection of an appropriate system is crucial. Here, it is necessary to decide on the basis of expected CYP system involved. For CYP1A-mediated pathways, all the commonly used experimental models are appropriate except probably the dog. On the contrary, the dog seems to be suitable for modelling of processes depending on the CYP2D. With CYP2C, which is possibly the most large and complicated subfamily, the systems based on monkey (Maccacus rhesus) may be a good representative. The CYP3A seems to be well modelled by pig or minipig CYP3A29. Detailed studies on activities with individual isolated CYP forms are needed to understand in full all aspects of inter-species differences and variations.
Zobrazit více v PubMed
Ortiz de Montellano P.R., (ed.), Cytochromes P450, Plenum Press, New York 1995.
Anzenbacher P., Anzenbacherová E., Cytochromes P450 and metabolism of xeno‐biotics, Cell. Mol. Life Sci., 58: 737, 2001. PubMed PMC
McLean M.A., Maves S.A., Weiss K.E., Krepich S., Sligar S.G., Characterization of a cytochrome P450 from the acidothermophilic archaea Sulfolobus solfataricus, Biochem. Biophys. Res. Commun., 252: 166, 1998. PubMed
Nelson D.R., Cytochrome P450 and the individuality of species, Arch. Biochem. Biophys., 369: 1–10, 1999. PubMed
For P450 pages on Internet, start e.g. with the http://mhc.com/cytochromes/links.HTML or with http://drnelson.utmem.edu/cytochromeP450.html.
Krishna D., Klotz U., Exrtahepatic metabolism of drugs in humans, Clin. Pharmacokinet., 26: 144, 1994. PubMed
Mandelbaum A., Pertyborn F., Martin/Facklam M., Wiesel M., Unexplained decrease of cyclosporin trough levels in a compliant renal transplant patient, Nephrol. Dialysis Transplantation, 15: 1473, 2000. PubMed
Mai I., Krüger H., Budde K., Johne A., Brockmöller J., Neumayer H.H., Roots I., Hazardous pharmacokinetic interaction of Saint John's wort (Hypericum perforatum) with the immunosuppressant cyclosporin, Int. J. Clin. Pharmacol. Therapeutics, 38: 500, 2000. PubMed
Thummel K.E., Wilkinson G.R., In vitro and in vivo drug interactions involving human CYP3A, Annual Rev. Pharmacol. Toxicol., 38: 389, 1998. PubMed
Mullins M.E., Horowitz B.Z., Linden D.H., Smith G.W., Norton R.L., Stump J., Life‐threatening interaction of mibefradil and beta‐blockers with dihydropyridine calcium channel blockers, JAMA, 280: 157, 1998. PubMed
Dresser G.K., Spencer D.J., Bailey D.G., Pharmacokinetic‐pharmacodynamic consequences and clinical relevance of cytochrome P450 3A4 inhibition, Clin. Pharmacokinet., 38: 41, 2000. PubMed
Bertz R.J., Granneman G.R., Use of in vitro and in vivo data to estimate the likelihood of metabolic pharmacokinetic interactions, Clin. Pharmacokinet. 32: 210, 1997. PubMed
Guengerich F.P., Human cytochrome P450 enzymes. In: Ref. 1, pp. 473–535.
Cooper D.J., Gollackner B., Sachs D.H., Will the pig solve the transplantation backlog?, Annu. Rev. Med., 53: 133, 2002. PubMed
Guengerich F.P., Comparisons on catalytic selectivity of cytochrome P450 subfamily enzymes from different species, Chem.-Biol. Interact., 106: 161, 1997. PubMed
Smith D.A., Species differences in metabolism and pharmacokinetics: Are we close to an understanding?, Drug Metabol. Revs., 23: 355, 1991. PubMed
Aleynik M.K., Lieber C.S., Dilinoleylphosphatidylcholine decreases ethanol‐induced cytochrome P450 2E1, Biochem. Biophys. Res. Commun., 288: 1047, 2001. PubMed
Lu C., Li A.P., Species comparison in cytochrome P450 induction: Effects of dexamethasone, omeprazole, and rifampine on P450 isoforms 1A and 3A in primary cultured hepatocytes form man, Sprague‐Dawley rat, minipig, and Beagle dog, Chem.-Biol. Interact. 134: 271, 2001. PubMed
Nedelcheva V., Gut I., P450 in the rat and man: Methods of investigation, substrate specifities and relevance to cancer, Xenobiotica, 24: 1151, 1994. PubMed
Strobl G.R., von Kruedener, S. , Stockigt J., Guengerich F.P., Wolff T., Development of a pharmacophore for inhibition of human liver cytochrome P450 2D6: Molecular modelling and inhibition studies, J. Med. Chem., 36: 1136, 1993. PubMed
Kobayashi K., Urashima K., Shimada T., Chiba K., Substrate specificity for rat cytochrome P450 (CYP) isoforms: Screening with cDNA‐expressed system of the rat, Biochem. Pharmacol., 63: 889, 2002. PubMed
Gonzalez F.J., Matsunaga Y., Nagata K., Meyer U.A., Nebert D.W., Pastewka J., Kozak C.A., Gillette J., Gelboin H.W., Hardwick J.P., Debrisoquine 4‐hydroxylase: Characterization of a new P450 gene subfamily., DNA, 6:149, 1987. PubMed
Quattrochi L.C., Tukey R.H., The human CYP1A2 gene and induction by 3‐methylcholanthrene, J.Biol.Chem., 269: 6949, 1994. PubMed
Haugen D.A., Coon M.J., Properties of electrophoretically homogenous phenobarbitalinducible and beta naphthoflavone‐inducible forms of liver microsomal cytochrome P‐450, J. Biol. Chem., 251: 7929, 1976. PubMed
Ding X., Pernecky S.J., Coon M.J., Purification and characterization of cytochrome P450 2E2 from hepatic microsomes of neonatal rabbits, Arch. Biochem. Bioiphys., 291: 270, 1991. PubMed
Schwartz P.S., Waxman D.J., Cyclophosphamide induces caspase 9‐dependent apoptosis in 9L tumor cells, Mol. Pharmacol., 60: 1268, 2001. PubMed
Waxman D.J., Attisano C., Guengerich F.P., Lapenson D.P., Cytochrome P450 steroid hormone metabolism catalyzed by human liver microsomes, Arch. Biochem. Biophys., 263: 424, 1988. PubMed
Yamamoto Y., Ishizuka M., Takada A., Fujita S., Cloning, tissue distribution, and functional expression of two novel rabbit cytochrome P450 isozymes, CYP2D23 and CYP2D24, J. Biochem. (Tokyo), 124: 503, 1998. PubMed
Bogaards J.J.P., Bertrand M., Jackson P., Oudshoorn M.J., Weaver R.J., van Bladeren P.J., Walther B., Determining the best animal model for human cytochrome P450 activities: Comparison of mouse, rat, rabbit, dog, micropig, monkey and man, Xenobiotica, 30: 1131, 2000. PubMed
Jayyosi Z., Muc M., Erick J., Thomas P.E., Kelley M., Catalytic and immunochemical characterization of cytochrome P450 isozyme induction in dog liver, Fundam. Appl. Toxicol., 31: 95, 1996. PubMed
Roussel F., Duignan D.B., Lawton M.P., Obach R.S., Strick C.S., Tweedie D.J., Expression and characterization of canine cytochrome P450 2D15, Arch. Biochem. Biophys., 357: 27, 1998. PubMed
Chauret N., Gauthier A., Martin J., Nicoll‐Griffith D.A., In vitro comparison of cytochrome P450‐mediated metabolic activities in human, dog, cat, and horse, Drug Metab. Disposition, 25: 1130, 1997. PubMed
Sharer J.E., Shipley L.A., Vandenbranden M.R., Binkley S.N., Wrighton S.A., Comparisons of phase I and phase II in vitro hepatic enzyme activities of human, dog, rhesus monkey, and cynomolgus monkey, Drug Metab. Disposition, 23: 1231, 1995. PubMed
Edwards R.J., Murray S., Schulz T., Neubert D., Gant T. W., Thorgeirsson S.S., Boobis A.R., Davis D.S., Contribution of CYP1A1 and CYP1A2 on the activation of heterocyclic amines in monkeys and human, Carcinogenesis, 15: 829, 1994. PubMed
Komori M., Kikuchi O., Sakuma T., Funaki J., Kitada M., Kamataki T., Molecular cloning of monkey liver cytochromes P‐450 cDNAs: Similarity of the primary sequences to human cytochromes P‐450, Biochim. Biophys. Acta, 1171: 141, 1992. PubMed
Anzenbacher P., Souèek P., Anzenbacherová E., Gut I., Hrubý K., Svoboda Z., Kvìtina J., Presence and activity of cytochrome P450 isoforms in minipig liver microsomes, Drug Metab. Disposition, 26: 56, 1998. PubMed
Skaanild M.T., Friis C., Characterization of the P450 system in Goettingen minipigs, Pharmacol. Toxicol., 80 (Suppl. 2): 28, 1997. PubMed
Monshouwer M., van't Klooster G.A.E., Nijmeijer S.M., Witkamp R.F., van Miert A.S.J.P.A.M., Characterization of cytochrome P450 isoenzymes in primary cultures of pig hepatocytes, Toxicol. In Vitro, 12: 715, 1998. PubMed
Myers M.J., Farrell D.E., Howard K.D., Kawalek J.C., Identification of multiple constitutive and inducible hepatic cytochrome P450 enzymes in market weight swine, Drug Metab. Disposition, 29: 908, 2001. PubMed
Hosseinpour F., Wikvall K., Porcine microsomal vitamin D3 25‐hydroxylase (CYP2D25), J. Biol. Chem., 275: 34650, 2000. PubMed
Clement B., Lomb R., Möller W., Isolation and characterization of the protein components of the liver microsomal O2‐insensitive NADH‐benzamidoxime reductase, J. Biol. Chem., 272: 19615, 1997. PubMed
Nissen P.H., Wintero A.K., Fredholm M., Mapping of porcine genes belonging to two different cytochrome P450 subfamilies, Animal Genetics, 29: 7, 1998. PubMed
Souèek P., Zuber R., Anzenbacherová E., Anzenbacher P., Guengerich F.P., Minipig cytochrome P450 3A, 2A and 2C enzymes have similar properties to human analogs, BMC Pharmacology, 1: 11, 2001. PubMed PMC
Olsen A., Hansen K.T., Friis C., Pig hepatocytes as an in vitro model to study the regulation of human CYP3A4: prediction of drug‐drug interactions with 17β‐ethynylestradiol, Chem.-Biol. Interact., 107: 93, 1997. PubMed
Anzenbacher P., Anzenbacherová E., Zuber R., Souèek P., Guengerich F.P., Pig and minipig cytochromes P450, Drug Metab. Disposition, 30: 100, 2002. PubMed
Takemori S., Kominami S., The role of cytochromes P450 in adrenal steroidogenesis, Trends Biochem. Sci., 9: 393, 1984.
Effect of methamphetamine on the pharmacokinetics of dextromethorphan and midazolam in rats