Minipig cytochrome P450 3A, 2A and 2C enzymes have similar properties to human analogs
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem, Research Support, U.S. Gov't, P.H.S.
Grantová podpora
P30 ES000267
NIEHS NIH HHS - United States
P0I ES00267
NIEHS NIH HHS - United States
R35 CA44353
NCI NIH HHS - United States
PubMed
11737866
PubMed Central
PMC60991
DOI
10.1186/1471-2210-1-11
Knihovny.cz E-zdroje
- MeSH
- aromatické hydroxylasy chemie metabolismus MeSH
- cytochrom P-450 CYP3A MeSH
- druhová specificita MeSH
- jaterní mikrozomy enzymologie MeSH
- lidé MeSH
- miniaturní prasata MeSH
- sekvenční analýza proteinů MeSH
- steroidhydroxylasy chemie metabolismus MeSH
- substrátová specifita MeSH
- systém (enzymů) cytochromů P-450 chemie metabolismus MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, U.S. Gov't, P.H.S. MeSH
- Názvy látek
- aromatické hydroxylasy MeSH
- CYP3A protein, human MeSH Prohlížeč
- CYP3A4 protein, human MeSH Prohlížeč
- cytochrom P-450 CYP3A MeSH
- cytochrome P-450 CYP2C subfamily MeSH Prohlížeč
- steroid hormone 7-alpha-hydroxylase MeSH Prohlížeč
- steroidhydroxylasy MeSH
- systém (enzymů) cytochromů P-450 MeSH
BACKGROUND: The search for an optimal experimental model in pharmacology is recently focused on (mini)pigs as they seem not only to be an alternative source of cells and tissues for xenotherapy but also an alternative species for studies on drug metabolism in man due to similarities between (mini) pig and human drug metabolizing systems. The purpose of this work is to characterize minipig liver microsomal cytochromes P450 (CYPs) by comparing their N-terminal sequences with corresponding human orthologs. RESULTS: The microsomal CYPs exhibit similar activities to their human orthologous enzymes (CYP3A4, nifedipine oxidation; 2A6, coumarin 7-hydroxylation; 2D6, bufuralol 1'-hydroxylation; 2E1, p-nitrophenol hydroxylation; and 2C9, tolbutamide hydroxylation). Specific minipig CYP (2A, 2C and 3A) enzymes were partially purified and proteins identified by immunostaining (using antibodies against the respective human CYPs) were used for N-terminal amino acid sequencing. From comparisons, it can be concluded that the sequence of the first 20 amino acids at the N-terminus of minipig CYP2A is highly similar to human CYP2A6 (70% identity). The N-terminal sequence of CYP2C shared about 50% similarity with human 2C9. The results on the minipig liver microsomal CYP3A yielded identical data with those obtained for amino acid sequences of the pig CYP3A29 showing 60% identity with human CYP3A4. CONCLUSIONS: Thus, our results further support the view that minipigs may serve as model animals in pharmacological/toxicological studies with substrates of human CYP enzymes, namely, of the CYP3A and CYP2A forms.
Zobrazit více v PubMed
Ortiz de Montellano PR, (editor) Cytochrome P450. (2nd Ed) New York, Plenum Press. 1995.
Guengerich FP. Metabolism of chemical carcinogens. Carcinogenesis. 2000;21:345–351. doi: 10.1093/carcin/21.3.345. PubMed DOI
Anzenbacher P, Anzenbacherová E. Cytochromes P450 and metabolism of xenobiotics. CMLS, Cell Mol Life Sci. 2001;58:737–747. PubMed PMC
Anzenbacher P, Soucek P, Anzenbacherová E, Gut I, Hrubý K, Svoboda Z, Kvetina J. Presence and activity of cytochrome P450 isoforms in minipig liver microsomes. Comparison with human liver samples. Drug Metab Dispos. 1998;26:90–93. PubMed
Marini S, Longo V, Mazzaccaro A, Gervasi PG. Xenobiotic-metabolizing enzymes in pig nasal and hepatic tissues. Xenobiotica. 1998;28:923–935. doi: 10.1080/004982598238994. PubMed DOI
Monshouwer M, van't Klooster GAE, Nijmeijer SM, Witkamp RF, van Miert ASJPAM. Characterization of cytochrome P450 isoenzymes in primary cultures of pig hepatocytes. Toxicol in Vitro. 1998;12:715–723. doi: 10.1016/S0887-2333(98)00053-8. PubMed DOI
Desille M, Corcos L, L'Helgoualc'h A, Frémond B, Campion J-P, Guillouzo A, Clément B. Detoxifying activity in pig livers and hepatocytes intended for xenotherapy. Transplantation. 1999;10:1437–1443. doi: 10.1097/00007890-199911270-00002. PubMed DOI
Skaanild M, Friis C. Cytochrome P450 sex differences in minipigs and conventional pigs. Pharm Toxicol. 1999;85:174–180. PubMed
Horslen SP, Hammel JM, Fristoe LW, Kangas JA, Collier DS, Sudan DL, Langnas AN, Dixon RS, Prentice ED, Shaw BW, Jr, Fox IJ. Extracorporeal liver perfusion using human and pig livers for acute liver failure. Transplantation. 2000;70:1472–1478. doi: 10.1097/00007890-200011270-00014. PubMed DOI
Kvetina J, Svoboda Z, Nobilis M, Pastera J, Anzenbacher P. Experimental Goettingen minipig and Beagle dog as two species used in bioequivalence studies for clinical pharmacology. Gen Physiol Biophys. 1999;18:80–85. PubMed
Donato MT, Castell JV, Gomez-Lechon MJ. Characterization of drug metabolizing activities in pig hepatocytes for use in bioartificial liver devices. J Hepatol. 1999;31:542–549. doi: 10.1016/S0168-8278(99)80049-X. PubMed DOI
Postlind H, Axén E, Bergman T, Wikvall K. Cloning, structure and expression of cDNA encoding vitamin D3-25 hydroxylase. Biochem Biophys Res Commun. 1997;241:491–497. doi: 10.1006/bbrc.1997.7551. PubMed DOI
Nissen PH, Wintero AK, Fredholm M. Mapping of porcine genes belonging to two different cytochrome P450 subfamilies. Anim Genet. 1998;29:7–11. doi: 10.1046/j.1365-2052.1998.00225.x. PubMed DOI
Jurima-Romet M, Calsley WL, Leblanc CA, Nowakowska M. Evidence for the catalysis of dextromethorphan O-demethylation by a CYP2D6-like enzyme in pig liver. Toxicol in Vitro. 2000;14:253–263. doi: 10.1016/S0887-2333(00)00016-3. PubMed DOI
Skaanild MT, Friis C. Expression changes of CYP2A and CYP3A in microsomes from pig liver and cultured hepatocytes. Pharm Toxicol. 2000;87:174–178. doi: 10.1034/j.1600-0773.2000.d01-69.x. PubMed DOI
Lampen A, Christians U, Guengerich FP, Watkins PB, Kolars JC, Bader A, Gonschior AK, Dralle H, Hackbarth I, Sewing KF. Metabolism of the immunosuppressant tacrolimus in the small intestine: Cytochrome P450, drug interactions, and interindividual variability. Drug Metab Dispos. 1995;12:1315–1324. PubMed
Olsen A, Hansen KT, Friis C. Pig hepatocytes as an in vitro model to study the regulation of human CYP3A4: prediction of drug-drug interactions with 17β-ethynylestradiol. Chem-Biol Interact. 1997;107:93–108. doi: 10.1016/S0009-2797(97)00077-X. PubMed DOI
Bader A, Hansen T, Kirchner G, Allmeling C, Haverich A, Borlak JT. Primary porcine enterocyte and hepatocyte cultures to study drug oxidation reactions. Br J Pharmacol. 2000;129:331–342. PubMed PMC
Soucek P, Martin MV, Ueng YF, Guengerich FP. Identification of common cytochrome P450 epitope near the conserved heme-binding peptide with antibodies raised against recombinant cytochrome P450 family 2 proteins. Biochemistry. 1995;34:16013–16021. PubMed
Sandhu P, Baba T, Guengerich FP. Expression of modified cytochrome 450 2C10(2C9) in Escherichia coli, purification, and reconstitution of catalytic activity. Arch Biochem Biophys. 1993;306:443–450. doi: 10.1006/abbi.1993.1536. PubMed DOI
Gillam EJ, Baba T, Kim BR, Ohmori S, Guengerich FP. Expression of modified human cytochrome P450 3A4 in Escherichia coli and purification and reconstitution of the enzyme. Arch Biochem Biophys. 1993;305:123–131. doi: 10.1006/abbi.1993.1401. PubMed DOI
Soucek P. Expression of cytochrome P4502A6 in Escherichia coli, purification, spectral, and catalytic characterization and preparation of polyclonal antibodies. Arch Biochem Biophys. 1999;370:190–200. doi: 10.1006/abbi.1999.1388. PubMed DOI
Lake BG. Preparation and characterisation of microsomal fractions for studies on xenobiotic metabolism. Biochemical Toxicology. A practical approach (Edited by Snell K, Mullock B) Oxford, IRL Press. 1990. pp. 183–215.
Guengerich FP, Dannan GA, Wright ST, Martin MV, Kaminsky LS. Purification and characterization of liver microsomal cytochromes P-450: electrophoretic, spectral, catalytic, and immunochemical properties and inducibility of eight isozymes isolated from rats treated with phenobarbital or beta naphthoflavone. Biochemistry. 1982;21:6019–6030. PubMed
Guengerich FP. Analysis and characterization of enzymes. Principles and Methods in Toxicology (edited by Hayes A W, 3rd Ed.) New York, Raven Press. 1994. pp. 1259–1313.
Guengerich FP, Martin MV, Beaune PR, Kremers P, Wolff T, Waxman DJ. Characterization of rat and human liver microsomal cytochrome P-450 forms involved in nifedipine oxidation, prototype for genetic polymorphism in oxidative drug metabolism. J Biol Chem. 1986;261:5051–5060. PubMed
Soucek P. Novel sensitive high performance liquid chromatographic method for assay of coumarin 7-hydroxylation. J Chromatogr B. 1999;734:23–29. doi: 10.1016/S0378-4347(99)00325-4. PubMed DOI
Knodell RG, Hall SD, Wilkinson GR, Guengerich FP. Hepatic metabolism of tolbutamide: Characterization of the form of the cytochrome P450 involved in methyl-hydroxylation and relationship to in vivo disposition. J Pharm Exp Ther. 1987;241:1112–1119. PubMed
Shimada T, Yamazaki H. Cytochrome P450 reconstitution systems. Cytochrome P450 Protocols (edited by IR Phillips and EA Shephard) Totowa, NJ, Humana Press. 1998. pp. 85–93. PubMed
Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970;227:680–685. PubMed
Fairbanks G, Steck TL, Wallach D. Electrophoretic analysis of the major polypeptides of human erythrocyte membrane. Biochemistry. 1971;10:2606–2617. PubMed
Towbin H, Staehelin T, Gordon J J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci USA. 1979;76:4350–4356. PubMed PMC
Porcine cytochrome 2A19 and 2E1
Cytochromes P450 and experimental models of drug metabolism