Analysis of binding of mannosides in relation to Langerin (CD207) in Langerhans cells of normal and transformed epithelia
Jazyk angličtina Země Nizozemsko Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
12588002
DOI
10.1023/a:1021793530802
Knihovny.cz E-zdroje
- MeSH
- antigeny povrchové imunologie metabolismus MeSH
- CD antigeny MeSH
- epidermální buňky MeSH
- epidermis chemie metabolismus MeSH
- karcinom metabolismus sekundární MeSH
- Langerhansovy buňky imunologie metabolismus patologie MeSH
- lektiny typu C chemie imunologie metabolismus MeSH
- lektiny vázající mannosu * MeSH
- lidé MeSH
- mannosidy imunologie metabolismus MeSH
- nádory metabolismus patologie MeSH
- počítačové zpracování obrazu MeSH
- ústní sliznice cytologie metabolismus MeSH
- vazebná místa protilátek MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- antigeny povrchové MeSH
- CD antigeny MeSH
- CD207 protein, human MeSH Prohlížeč
- lektiny typu C MeSH
- lektiny vázající mannosu * MeSH
- mannosidy MeSH
Tandem-repeat C-type lectins (pattern-recognition receptors) with specificity for mannosides are intimately involved in antigen recognition, uptake, routing and presentation in macrophages and dendritic cells. In Langerhans cells, Langerin (CD207), a type-II transmembrane protein with a single C-type carbohydrate recognition domain attached to a heptad repeat in the neck region, which is likely to establish oligomers with an alpha-coiled-coil stalk, has been implicated in endocytosis and the formation of Birbeck granules. The structure of Langerin harbours essential motifs for Ca2+-binding and sugar accommodation. Lectin activity has previously been inferred by diminished antibody binding to cells in the presence of the glycan ligand mannan. In view of the complexity of the C-type lectin/lectin-like network, it is unclear what role Langerin plays for Langerhans cells in binding mannosides. In order to reveal in frozen tissue sections to what extent mannose-binding activity co-localizes with Langerin, we have used a synthetic marker, i.e. a neoglycoprotein carrying mannose maxiclusters, as a histochemical ligand, and computer-assisted fluorescence monitoring in a double-labelling procedure. Mannoside-binding capacity was detected in normal epithelial cells. Double labelling ensured the unambiguous assessment of the binding of the neoglycoprotein in Langerhans cells. Light-microscopically, its localization profile resembled the pattern of immunohistochemical detection of Langerin. This result has implications for suggesting rigorous controls in histochemical analysis of this cell type, because binding of kit reagents, i.e. mannose-rich glycoproteins horseradish peroxidase or avidin, to Langerin (or a spatially closely associated lectin) could yield false-positive signals. To show that recognition of carbohydrate ligands in dendritic cells is not restricted to mannose clusters, we have also documented binding of carrier-immobilized histo-blood group A trisaccharide, a ligand of galectin-3, which was not affected by the presence of a blocking antibody to Langerin. Remarkably, access to the carbohydrate recognition domain of Langerin appeared to be impaired in proliferatively active environments (malignancies, hair follicles), indicating presence of an endogenous ligand with high affinity to saturate the C-type lectin under these conditions.
Zobrazit více v PubMed
Eur J Immunol. 1999 Feb;29(2):571-80 PubMed
J Immunol. 1999 Aug 15;163(4):1973-83 PubMed
J Cancer Res Clin Oncol. 1999 Aug-Sep;125(8-9):461-74 PubMed
Eur J Immunol. 1999 Sep;29(9):2695-704 PubMed
J Leukoc Biol. 1999 Oct;66(4):644-9 PubMed
Exp Neurol. 1999 Dec;160(2):508-14 PubMed
Immunity. 2000 Jan;12(1):71-81 PubMed
Haematologica. 2000 Feb;85(2):202-7 PubMed
Folia Biol (Praha). 1999;45(4):157-62 PubMed
J Biol Chem. 2000 Apr 21;275(16):11957-63 PubMed
J Biol Chem. 2000 Jun 30;275(26):20157-67 PubMed
Naturwissenschaften. 2000 Mar;87(3):108-21 PubMed
Eur J Biochem. 2000 Aug;267(16):5257-64 PubMed
Adv Drug Deliv Rev. 2000 Sep 30;43(2-3):225-44 PubMed
Pharm Res. 2000 Aug;17(8):985-90 PubMed
Folia Biol (Praha). 2000;46(5):195-8 PubMed
Int Immunol. 2000 Nov;12(11):1511-9 PubMed
Anat Histol Embryol. 2001 Feb;30(1):3-31 PubMed
BMC Cell Biol. 2001;2:17 PubMed
Biochem Biophys Res Commun. 2001 Dec 14;289(4):845-50 PubMed
J Immunol. 2002 Jan 15;168(2):782-92 PubMed
Nat Rev Immunol. 2002 Feb;2(2):77-84 PubMed
Chembiochem. 2001 Oct 1;2(10):747-57 PubMed
Biochim Biophys Acta. 2002 Sep 19;1572(2-3):364-86 PubMed
J Invest Dermatol. 1992 Oct;99(4):365-73 PubMed
J Invest Dermatol. 1992 Jul;99(1):53-8 PubMed
Biochim Biophys Acta. 1991 Mar 7;1071(1):1-18 PubMed
Prog Histochem Cytochem. 1991;22(3):1-16 PubMed
Histochemistry. 1990;94(5):497-504 PubMed
Eur J Cell Biol. 1990 Jun;52(1):87-97 PubMed
J Biol Chem. 1987 May 25;262(15):7383-90 PubMed
Cancer. 1988 Mar 15;61(6):1125-31 PubMed
Exp Dermatol. 1994 Feb;3(1):9-16 PubMed
J Neurosci. 1994 May;14(5 Pt 2):3231-45 PubMed
J Exp Med. 1993 Aug 1;178(2):509-19 PubMed
Histol Histopathol. 1993 Apr;8(2):369-83 PubMed
J Cell Biol. 1996 Apr;133(1):159-67 PubMed
J Leukoc Biol. 1997 Jan;61(1):63-72 PubMed
Eur J Biochem. 1997 Feb 1;243(3):543-76 PubMed
Eur J Immunol. 1997 Sep;27(9):2417-25 PubMed
Nature. 1998 Mar 19;392(6673):245-52 PubMed
Acta Anat (Basel). 1998;161(1-4):162-79 PubMed
Eur J Immunol. 1998 Nov;28(11):3541-51 PubMed
Eur J Dermatol. 1998 Dec;8(8):539-47 PubMed