Search for protein partners of mitochondrial single-stranded DNA-binding protein Rim1p using a yeast two-hybrid system
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články, práce podpořená grantem, Research Support, U.S. Gov't, P.H.S.
Grantová podpora
1-R03-TW05654-01
FIC NIH HHS - United States
PubMed
12807077
DOI
10.1007/bf02930953
Knihovny.cz E-zdroje
- MeSH
- DNA vazebné proteiny metabolismus MeSH
- fungální proteiny metabolismus MeSH
- jednovláknová DNA metabolismus MeSH
- mitochondriální DNA metabolismus MeSH
- represorové proteiny MeSH
- Saccharomyces cerevisiae - proteiny metabolismus MeSH
- Saccharomyces cerevisiae genetika metabolismus MeSH
- techniky dvojhybridového systému * MeSH
- transkripční faktory metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, U.S. Gov't, P.H.S. MeSH
- Názvy látek
- AZF1 protein, S cerevisiae MeSH Prohlížeč
- DNA vazebné proteiny MeSH
- fungální proteiny MeSH
- jednovláknová DNA MeSH
- mitochondriální DNA MeSH
- represorové proteiny MeSH
- RIM101 protein, S cerevisiae MeSH Prohlížeč
- Saccharomyces cerevisiae - proteiny MeSH
- transkripční faktory MeSH
RIM1 is a nuclear gene of the yeast Saccharomyces cerevisiae coding for a protein with single-stranded DNA-binding activity that is essential for mitochondrial genome maintenance. No protein partners of Rim1p have been described so far in yeast. To better understand the role of this protein in mitochondrial DNA replication and recombination, a search for protein interactors by the yeast two-hybrid system was performed. This approach led to the identification of several candidates, including a putative transcription factor, Azf1p, and Mph1p, a protein with an RNA helicase domain which is known to influence the mutation rate of nuclear and mitochondrial genomes.
Zobrazit více v PubMed
Mol Cell Biol. 1994 Feb;14(2):1045-53 PubMed
Mol Gen Genet. 1999 Dec;262(4-5):683-702 PubMed
Gene. 1994 Jun 10;143(2):171-7 PubMed
Mol Cell Biol. 2000 Mar;20(5):1816-24 PubMed
Gene. 1999 Jun 11;233(1-2):197-203 PubMed
Nat Genet. 2001 Jul;28(3):223-31 PubMed
Biochem Biophys Res Commun. 1998 Jan 14;242(2):457-60 PubMed
Gene. 1993 Apr 30;126(2):219-25 PubMed
Biochim Biophys Acta. 2001 Dec 30;1522(3):175-86 PubMed
Proc Natl Acad Sci U S A. 2000 Jun 20;97(13):7382-7 PubMed
Yeast. 1994 Jun;10(6):719-31 PubMed
Mol Cell Biol. 1995 Oct;15(10):5820-9 PubMed
EMBO J. 1987 May;6(5):1441-9 PubMed
Nucleic Acids Res. 1988 Jul 11;16(13):6127-45 PubMed
EMBO J. 1992 Sep;11(9):3421-30 PubMed
Methods Enzymol. 1991;194:319-29 PubMed
Gene. 2000 Apr 4;246(1-2):37-48 PubMed
Biochem Biophys Res Commun. 1995 Sep 5;214(1):188-94 PubMed
Genetics. 2000 Jul;155(3):1069-81 PubMed
J Biol Chem. 1989 Dec 5;264(34):20552-60 PubMed
EMBO J. 1996 Mar 15;15(6):1231-7 PubMed
J Biol Chem. 1997 Jan 31;272(5):3049-56 PubMed
Nat Biotechnol. 2000 Dec;18(12):1257-61 PubMed
Curr Opin Chem Biol. 2002 Feb;6(1):106-11 PubMed
Nat Genet. 2001 Jul;28(3):211-2 PubMed
Mol Gen Genet. 1988 Oct;214(2):218-23 PubMed
Science. 1998 Dec 11;282(5396):2012-8 PubMed
Proc Natl Acad Sci U S A. 2001 Apr 10;98(8):4569-74 PubMed
Proc Natl Acad Sci U S A. 1986 May;83(10):3391-4 PubMed
Mte1 interacts with Mph1 and promotes crossover recombination and telomere maintenance