A fibre optic oxygen sensor that detects rapid PO2 changes under simulated conditions of cyclical atelectasis in vitro
Language English Country Netherlands Media print-electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
Grant support
095759
Wellcome Trust - United Kingdom
II-AR-0410-12031
Department of Health - United Kingdom
PubMed
24184746
PubMed Central
PMC3906517
DOI
10.1016/j.resp.2013.10.006
PII: S1569-9048(13)00343-1
Knihovny.cz E-resources
- Keywords
- Cross-over computer control system, Cyclical atelectasis simulation, Optical sensor,
- MeSH
- Analysis of Variance MeSH
- Pulmonary Atelectasis blood MeSH
- Biological Clocks MeSH
- Blood Coagulation physiology MeSH
- Blood Pressure physiology MeSH
- Oxygen blood MeSH
- Microscopy, Electron, Scanning MeSH
- Partial Pressure MeSH
- Computer Simulation * MeSH
- In Vitro Techniques MeSH
- Fiber Optic Technology * MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Oxygen MeSH
Two challenges in the management of Acute Respiratory Distress Syndrome are the difficulty in diagnosing cyclical atelectasis, and in individualising mechanical ventilation therapy in real-time. Commercial optical oxygen sensors can detect [Formula: see text] oscillations associated with cyclical atelectasis, but are not accurate at saturation levels below 90%, and contain a toxic fluorophore. We present a computer-controlled test rig, together with an in-house constructed ultra-rapid sensor to test the limitations of these sensors when exposed to rapidly changing [Formula: see text] in blood in vitro. We tested the sensors' responses to simulated respiratory rates between 10 and 60 breaths per minute. Our sensor was able to detect the whole amplitude of the imposed [Formula: see text] oscillations, even at the highest respiratory rate. We also examined our sensor's resistance to clot formation by continuous in vivo deployment in non-heparinised flowing animal blood for 24h, after which no adsorption of organic material on the sensor's surface was detectable by scanning electron microscopy.
See more in PubMed
Albert R.K. The role of ventilation-induced surfactant dysfunction and atelectasis in causing acute respiratory distress syndrome. Am. J. Respir. Crit. Care Med. 2012;185:702–708. PubMed
Baumgardner J.E., Markstaller K., Pfeiffer B., Doebrich M., Otto C.M. Effects of respiratory rate, plateau pressure, and positive end-expiratory pressure on PaO2 oscillations after saline lavage. Am. J. Respir. Crit. Care Med. 2002;166:1556–1562. PubMed
Baumgardner J.E., Syring R.S. Maintenance of end-expiratory recruitment with increased respiratory rate after saline-lavage lung injury. J. Appl. Physiol. 2007;102:2415. PubMed
Bergman N.A. Cyclic variations in blood oxygenation with the respiratory cycle. Anesthesiology. 1961;22:900–908. PubMed
Bergman N.A. Effect of variations in lung volume and alveolar gas composition on the rate of fall of oxygen saturation during apnea. Anesthesiology. 1961;22:128–129.
Bodenstein M., Wang H., Boehme S., Baumgardner J.E., Duenges B., Vogt A., David M., Markstaller K. Observation of ventilation-induced Spo2 oscillations in pigs: first step to noninvasive detection of cyclic recruitment of atelectasis? Exp. Lung Res. 2010;36:270–276. PubMed
Chen R., Farmery A.D., Obeid A., Hahn C.E.W. A cylindrical-core fiber-optic oxygen sensor based on fluorescence quenching of a platinum complex immobilized in a polymer matrix. IEEE Sensors J. 2012;12:71–75.
Chen R., Hahn C.E., Farmery A.D. A flowing liquid test system for assessing the linearity and time-response of rapid fibre optic oxygen partial pressure sensors. Respir. Physiol. Neurobiol. 2012;183:100–107. PubMed
Costa E., Amato M. Maintenance of end-expiratory recruitment with increased respiratory rate after saline-lavage lung injury. J. Appl. Physiol. 2007;102:2414. author reply 2415. PubMed
Duggan M., Kavanagh B.P. Pulmonary atelectasis: a pathogenic perioperative entity. Anesthesiology. 2005;102:838–854. PubMed
Fan E., Villar J., Slutsky A.S. Novel approaches to minimize ventilator-induced lung injury. BMC Med. 2013;11:85. PubMed PMC
Folgering H., Smolders F.D.J., Kreuzer F. Respiratory oscillations of the arterial PO2 and their effects on the ventilatory controlling system in the cat. Pflugers Archiv. 1978;375:1–7. PubMed
Gama de Abreu M., Cuevas M., Spieth P.M., Carvalho A.R., Hietschold V., Stroszczynski C., Wiedemann B., Koch T., Pelosi P., Koch E. Regional lung aeration and ventilation during pressure support and biphasic positive airway pressure ventilation in experimental lung injury. Crit. Care. 2010;14:R34. PubMed PMC
Hahn C.E., Farmery A.D. Gas exchange modelling: no more gills, please. Br. J. Anaesth. 2003;91:2–15. PubMed
Hartmann E.K., Boehme S., Bentley A., Duenges B., Klein K.U., Elsaesser A., Baumgardner J.E., David M., Markstaller K. Influence of respiratory rate and end-expiratory pressure variation on cyclic alveolar recruitment in an experimental lung injury model. Crit. Care. 2012;16:R8. PubMed PMC
Herweling A., Karmrodt J., Stepniak A., Fein A., Baumgardner J.E., Eberle B., Markstaller K. A novel technique to follow fast PaO2 variations during experimental CPR. Resuscitation. 2005;65:71–78. PubMed
McDonagh C., Kolle C., McEvoy A.K., Dowling D.L., Cafolla A.A., Cullen S.J., MacCraith B.D. Phase fluorometric dissolved oxygen sensor. Sensors Actuat. B: Chem. 2001;74:124–130.
Otto C.M., Markstaller K., Kajikawa O., Karmrodt J., Syring R.S., Pfeiffer B., Good V.P., Frevert C.W., Baumgardner J.E. Spatial and temporal heterogeneity of ventilator-associated lung injury after surfactant depletion. J. Appl. Physiol. 2008;104:1485–1494. PubMed PMC
Purves M.J. Communications. J. Physiol. 1965;176:7P–8P.
Purves M.J. Fluctuations of arterial oxygen tension which have the same period as respiration. Respir. Physiol. 1966;1:281–296. PubMed
Saied A., Edgington L., Gale L., Palayiwa E., Belcher R., Farmery A.D., Chen R., Hahn C.E. Design of a test system for fast time response fibre optic oxygen sensors. Physiol. Meas. 2010;31:N25–N33. PubMed
Severinghaus J.W., Astrup P.B. History of blood gas analysis. VI. Oximetry. J. Clin. Monit. 1986;2:270–288. PubMed
Shi C., Boehme S., Hartmann E.K., Markstaller K. Novel technologies to detect atelectotrauma in the injured lung. Exp. Lung Res. 2011;37:18–25. PubMed
Suki B., Barabasi A.L., Hantos Z., Petak F., Stanley H.E. Avalanches and power-law behaviour in lung inflation. Nature. 1994;368:615–618. PubMed
Syring R.S., Otto C.M., Spivack R.E., Markstaller K., Baumgardner J.E. Maintenance of end-expiratory recruitment with increased respiratory rate after saline-lavage lung injury. J. Appl. Physiol. 2007;102:331–339. PubMed
Whiteley J.P., Farmery A.D., Gavaghan D.J., Hahn C.E. A tidal ventilation model for oxygenation in respiratory failure. Respir. Physiol. Neurobiol. 2003;136:77–88. PubMed
Williams E.M., Viale J.P., Hamilton R.M., McPeak H., Sutton L., Hahn C.E. Within-breath arterial PO2 oscillations in an experimental model of acute respiratory distress syndrome. Br. J. Anaesth. 2000;85:456–459. PubMed
Yasbin R.E., Matthews C.R., Clarke M.J. Mutagenic and toxic effects of ruthenium. Chem. Biol. Interact. 1980;31:355–365. PubMed