A fibre optic oxygen sensor that detects rapid PO2 changes under simulated conditions of cyclical atelectasis in vitro

. 2014 Jan 15 ; 191 () : 1-8. [epub] 20131031

Jazyk angličtina Země Nizozemsko Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid24184746

Grantová podpora
095759 Wellcome Trust - United Kingdom
II-AR-0410-12031 Department of Health - United Kingdom

Odkazy

PubMed 24184746
PubMed Central PMC3906517
DOI 10.1016/j.resp.2013.10.006
PII: S1569-9048(13)00343-1
Knihovny.cz E-zdroje

Two challenges in the management of Acute Respiratory Distress Syndrome are the difficulty in diagnosing cyclical atelectasis, and in individualising mechanical ventilation therapy in real-time. Commercial optical oxygen sensors can detect [Formula: see text] oscillations associated with cyclical atelectasis, but are not accurate at saturation levels below 90%, and contain a toxic fluorophore. We present a computer-controlled test rig, together with an in-house constructed ultra-rapid sensor to test the limitations of these sensors when exposed to rapidly changing [Formula: see text] in blood in vitro. We tested the sensors' responses to simulated respiratory rates between 10 and 60 breaths per minute. Our sensor was able to detect the whole amplitude of the imposed [Formula: see text] oscillations, even at the highest respiratory rate. We also examined our sensor's resistance to clot formation by continuous in vivo deployment in non-heparinised flowing animal blood for 24h, after which no adsorption of organic material on the sensor's surface was detectable by scanning electron microscopy.

Komentář v

PubMed

Zobrazit více v PubMed

Albert R.K. The role of ventilation-induced surfactant dysfunction and atelectasis in causing acute respiratory distress syndrome. Am. J. Respir. Crit. Care Med. 2012;185:702–708. PubMed

Baumgardner J.E., Markstaller K., Pfeiffer B., Doebrich M., Otto C.M. Effects of respiratory rate, plateau pressure, and positive end-expiratory pressure on PaO2 oscillations after saline lavage. Am. J. Respir. Crit. Care Med. 2002;166:1556–1562. PubMed

Baumgardner J.E., Syring R.S. Maintenance of end-expiratory recruitment with increased respiratory rate after saline-lavage lung injury. J. Appl. Physiol. 2007;102:2415. PubMed

Bergman N.A. Cyclic variations in blood oxygenation with the respiratory cycle. Anesthesiology. 1961;22:900–908. PubMed

Bergman N.A. Effect of variations in lung volume and alveolar gas composition on the rate of fall of oxygen saturation during apnea. Anesthesiology. 1961;22:128–129.

Bodenstein M., Wang H., Boehme S., Baumgardner J.E., Duenges B., Vogt A., David M., Markstaller K. Observation of ventilation-induced Spo2 oscillations in pigs: first step to noninvasive detection of cyclic recruitment of atelectasis? Exp. Lung Res. 2010;36:270–276. PubMed

Chen R., Farmery A.D., Obeid A., Hahn C.E.W. A cylindrical-core fiber-optic oxygen sensor based on fluorescence quenching of a platinum complex immobilized in a polymer matrix. IEEE Sensors J. 2012;12:71–75.

Chen R., Hahn C.E., Farmery A.D. A flowing liquid test system for assessing the linearity and time-response of rapid fibre optic oxygen partial pressure sensors. Respir. Physiol. Neurobiol. 2012;183:100–107. PubMed

Costa E., Amato M. Maintenance of end-expiratory recruitment with increased respiratory rate after saline-lavage lung injury. J. Appl. Physiol. 2007;102:2414. author reply 2415. PubMed

Duggan M., Kavanagh B.P. Pulmonary atelectasis: a pathogenic perioperative entity. Anesthesiology. 2005;102:838–854. PubMed

Fan E., Villar J., Slutsky A.S. Novel approaches to minimize ventilator-induced lung injury. BMC Med. 2013;11:85. PubMed PMC

Folgering H., Smolders F.D.J., Kreuzer F. Respiratory oscillations of the arterial PO2 and their effects on the ventilatory controlling system in the cat. Pflugers Archiv. 1978;375:1–7. PubMed

Gama de Abreu M., Cuevas M., Spieth P.M., Carvalho A.R., Hietschold V., Stroszczynski C., Wiedemann B., Koch T., Pelosi P., Koch E. Regional lung aeration and ventilation during pressure support and biphasic positive airway pressure ventilation in experimental lung injury. Crit. Care. 2010;14:R34. PubMed PMC

Hahn C.E., Farmery A.D. Gas exchange modelling: no more gills, please. Br. J. Anaesth. 2003;91:2–15. PubMed

Hartmann E.K., Boehme S., Bentley A., Duenges B., Klein K.U., Elsaesser A., Baumgardner J.E., David M., Markstaller K. Influence of respiratory rate and end-expiratory pressure variation on cyclic alveolar recruitment in an experimental lung injury model. Crit. Care. 2012;16:R8. PubMed PMC

Herweling A., Karmrodt J., Stepniak A., Fein A., Baumgardner J.E., Eberle B., Markstaller K. A novel technique to follow fast PaO2 variations during experimental CPR. Resuscitation. 2005;65:71–78. PubMed

McDonagh C., Kolle C., McEvoy A.K., Dowling D.L., Cafolla A.A., Cullen S.J., MacCraith B.D. Phase fluorometric dissolved oxygen sensor. Sensors Actuat. B: Chem. 2001;74:124–130.

Otto C.M., Markstaller K., Kajikawa O., Karmrodt J., Syring R.S., Pfeiffer B., Good V.P., Frevert C.W., Baumgardner J.E. Spatial and temporal heterogeneity of ventilator-associated lung injury after surfactant depletion. J. Appl. Physiol. 2008;104:1485–1494. PubMed PMC

Purves M.J. Communications. J. Physiol. 1965;176:7P–8P.

Purves M.J. Fluctuations of arterial oxygen tension which have the same period as respiration. Respir. Physiol. 1966;1:281–296. PubMed

Saied A., Edgington L., Gale L., Palayiwa E., Belcher R., Farmery A.D., Chen R., Hahn C.E. Design of a test system for fast time response fibre optic oxygen sensors. Physiol. Meas. 2010;31:N25–N33. PubMed

Severinghaus J.W., Astrup P.B. History of blood gas analysis. VI. Oximetry. J. Clin. Monit. 1986;2:270–288. PubMed

Shi C., Boehme S., Hartmann E.K., Markstaller K. Novel technologies to detect atelectotrauma in the injured lung. Exp. Lung Res. 2011;37:18–25. PubMed

Suki B., Barabasi A.L., Hantos Z., Petak F., Stanley H.E. Avalanches and power-law behaviour in lung inflation. Nature. 1994;368:615–618. PubMed

Syring R.S., Otto C.M., Spivack R.E., Markstaller K., Baumgardner J.E. Maintenance of end-expiratory recruitment with increased respiratory rate after saline-lavage lung injury. J. Appl. Physiol. 2007;102:331–339. PubMed

Whiteley J.P., Farmery A.D., Gavaghan D.J., Hahn C.E. A tidal ventilation model for oxygenation in respiratory failure. Respir. Physiol. Neurobiol. 2003;136:77–88. PubMed

Williams E.M., Viale J.P., Hamilton R.M., McPeak H., Sutton L., Hahn C.E. Within-breath arterial PO2 oscillations in an experimental model of acute respiratory distress syndrome. Br. J. Anaesth. 2000;85:456–459. PubMed

Yasbin R.E., Matthews C.R., Clarke M.J. Mutagenic and toxic effects of ruthenium. Chem. Biol. Interact. 1980;31:355–365. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...