Cognitive potentials in the basal ganglia-frontocortical circuits. An intracerebral recording study
Language English Country Germany Media print-electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
- MeSH
- Acoustic Stimulation MeSH
- Basal Ganglia physiology MeSH
- Frontal Lobe physiology MeSH
- Gyrus Cinguli physiology MeSH
- Adult MeSH
- Evoked Potentials physiology MeSH
- Cognition physiology MeSH
- Contingent Negative Variation physiology MeSH
- Humans MeSH
- Brain Mapping MeSH
- Adolescent MeSH
- Motor Cortex physiology MeSH
- Neural Pathways physiology MeSH
- Movement physiology MeSH
- Prefrontal Cortex physiology MeSH
- Putamen physiology MeSH
- Reaction Time physiology MeSH
- Auditory Perception physiology MeSH
- Evoked Potentials, Auditory physiology MeSH
- Visual Perception physiology MeSH
- Evoked Potentials, Visual physiology MeSH
- Check Tag
- Adult MeSH
- Humans MeSH
- Adolescent MeSH
- Male MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
We studied cognitive functions related to processing sensory and motor activities in the basal ganglia (BG), specifically in the putamen and in cortical structures forming the BG-frontocortical circuits. Intracerebral recordings were made from 160 brain sites in 32 epilepsy surgery candidates. We studied P3-like potentials in five different tests evoked by auditory and visual stimuli, and two sustained potentials that are related to cognitive activities linked with movement preparation: BP (Bereitschaftspotential) and CNV (contingent negative variation). We compared the presence of a potential with a phase reversal or an amplitude gradient to the absence of a generator. All of the studied cognitive potentials were generated in the BG; the occurrence in frontal cortical areas was more selective. The frequency of all but one potential was significantly higher in the BG than in the prefrontal and in the cingulate cortices. The P3-like potentials elicited in the oddball paradigm were also more frequent in the BG than in the motor/premotor cortex, while the occurrence of potentials elicited in motor tasks (BP, CNV, and P3-like potentials in the CNV paradigm) in the motor cortex did not significantly differ from the occurrence in the BG. The processing of motor tasks fits with the model by Alexander et al. of segregated information processing in the motor loop. A variable and task-dependent internal organisation is more probable in cognitive sensory information processing. Cognitive potentials were recorded from all over the putamen. The BG may play an integrative role in cognitive information processing.
See more in PubMed
Electroencephalogr Clin Neurophysiol. 1998 Oct;107(4):277-86 PubMed
Electroencephalogr Clin Neurophysiol. 1995 Oct;95(4):268-76 PubMed
Neurophysiol Clin. 1999 Sep;29(4):339-50 PubMed
Tohoku J Exp Med. 1990 Aug;161 Suppl:155-65 PubMed
Mov Disord. 2001 May;16(3):407-23 PubMed
Clin Neurophysiol. 2002 Dec;113(12):1998-2005 PubMed
Rev Neurol (Paris). 1994 Nov;150(11):763-70 PubMed
Suppl Clin Neurophysiol. 2000;53:192-5 PubMed
Electroencephalogr Clin Neurophysiol. 1991 Jan;78(1):40-9 PubMed
Arch Neurol. 1993 Aug;50(8):873-80 PubMed
Brain. 1992 Aug;115 ( Pt 4):1017-43 PubMed
Brain. 1991 Aug;114 ( Pt 4):1685-702 PubMed
Clin Neurophysiol. 2001 Nov;112(11):2146-53 PubMed
Electroencephalogr Clin Neurophysiol. 1988 Mar;69(3):234-43 PubMed
Exp Brain Res. 1998 May;120(1):114-28 PubMed
Clin Neurophysiol. 2001 Nov;112(11):2022-30 PubMed
Clin Neurophysiol. 2001 Apr;112(4):650-61 PubMed
Clin Neurophysiol. 2000 Oct;111(10):1847-59 PubMed
Pflugers Arch Gesamte Physiol Menschen Tiere. 1965 May 10;284:1-17 PubMed
Electroencephalogr Clin Neurophysiol. 1998 Feb;106(2):156-64 PubMed
Clin Neurophysiol. 2003 Mar;114(3):463-71 PubMed
Exp Brain Res. 1999 Aug;127(4):409-22 PubMed
Electroencephalogr Clin Neurophysiol. 1992 Jul-Aug;84(4):386-93 PubMed
Mov Disord. 2001 Jul;16(4):698-704 PubMed
Brain Cogn. 2000 Mar;42(2):183-200 PubMed
Electroencephalogr Clin Neurophysiol. 1992 Jul-Aug;84(4):373-85 PubMed
Parkinsonism Relat Disord. 2001 Jul;7(3):193-198 PubMed
Electroencephalogr Clin Neurophysiol. 1995 Apr;94(4):229-50 PubMed
Exp Brain Res. 1992;91(3):385-95 PubMed
Mov Disord. 1998 Mar;13(2):199-202 PubMed
Neurosci Res. 1986 Jul;3(5):436-43 PubMed
Neurology. 1983 Jun;33(6):797-9 PubMed
Electroencephalogr Clin Neurophysiol. 1994 Apr;90(4):273-83 PubMed
Electroencephalogr Clin Neurophysiol Suppl. 1986;38:505-44 PubMed
Electroencephalogr Clin Neurophysiol. 1995 Apr;94(4):251-64 PubMed
Annu Rev Neurosci. 1986;9:357-81 PubMed
Schizophr Bull. 1997;23(3):459-69 PubMed
Trends Neurosci. 1990 Jul;13(7):241-4 PubMed
Electroencephalogr Clin Neurophysiol. 1995 Mar;94(3):191-220 PubMed