Polymorphisms in equine immune response genes and their associations with infections
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
- MeSH
- genetická predispozice k nemoci * MeSH
- geny MHC třídy II * genetika imunologie MeSH
- interferon gama genetika imunologie MeSH
- interleukin-12 genetika imunologie MeSH
- koně genetika imunologie mikrobiologie MeSH
- Lawsonia (bakterie) metabolismus MeSH
- polymorfismus genetický * MeSH
- Rhodococcus equi metabolismus MeSH
- savčí chromozomy genetika MeSH
- synthasa oxidu dusnatého, typ II MeSH
- synthasa oxidu dusnatého genetika imunologie MeSH
- TNF-alfa genetika imunologie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- interferon gama MeSH
- interleukin-12 MeSH
- synthasa oxidu dusnatého, typ II MeSH
- synthasa oxidu dusnatého MeSH
- TNF-alfa MeSH
Polymorphic markers identified in the horse genes encoding the interleukin 12 p40 subunit, interferon gamma, tumor necrosis factor receptor 1, and inducible nitric oxide synthase were identified and tested, along with additional markers, for associations with two important horse infections: Rhodococcus equi and Lawsonia intracellularis. Eight immune response-related and 14 microsatellite loci covering 12 out of 31 equine autosomes were used for the association analysis. Markers located on horse Chromosomes Eca10 and 15 were significantly associated with the presence of high numbers of R. equi in transtracheal aspirates. Significant associations of markers located on Eca9, 15, and 21 with fecal shedding of Lawsonia intracellularis were found. Marginal associations with tumor necrosis factor alpha, interferon gamma, and other genes suggested that variations in immune response-related genes could underlie the phenotypic variation observed.
Zobrazit více v PubMed
Vet Microbiol. 1997 Jun 16;56(3-4):257-68 PubMed
J Appl Bacteriol. 1994 Sep;77(3):325-33 PubMed
J Clin Microbiol. 1990 Mar;28(3):495-503 PubMed
J Clin Microbiol. 1993 Oct;31(10):2611-5 PubMed
Immunol Rev. 2002 Dec;190:169-81 PubMed
Clin Infect Dis. 2002 May 15;34(10):1379-85 PubMed
J Clin Microbiol. 1995 Jun;33(6):1624-7 PubMed
Vet Pathol. 2003 Jul;40(4):421-32 PubMed
Vet Microbiol. 2001 Oct 1;82(4):331-45 PubMed
Mamm Genome. 2002 Sep;13(9):524-34 PubMed
Genome Res. 2003 Apr;13(4):742-51 PubMed
Vet Microbiol. 2003 Feb 2;91(2-3):135-45 PubMed
J Clin Microbiol. 1979 May;9(5):640-2 PubMed
Vet Microbiol. 1997 Jun 16;56(3-4):167-76 PubMed
Immunol Rev. 2002 Dec;190:9-25 PubMed
Vet Microbiol. 1985 Apr;10(3):293-300 PubMed
Curr Opin Immunol. 2002 Oct;14(5):609-14 PubMed
Mamm Genome. 2003 Jul;14(7):448-53 PubMed
Clin Diagn Lab Immunol. 2003 Mar;10(2):208-15 PubMed
Pharmacogenomics J. 2002;2(6):349-60 PubMed
Infect Immun. 1999 Oct;67(10):5041-7 PubMed
Clin Diagn Lab Immunol. 2003 May;10(3):345-51 PubMed
Eur J Immunogenet. 2002 Oct;29(5):423-9 PubMed
Eur J Immunogenet. 2002 Aug;29(4):285-6 PubMed
Equine Vet J. 2000 Sep;32(5):418-25 PubMed
Genome Res. 1999 Dec;9(12):1239-49 PubMed
J Med Primatol. 1999 Feb;28(1):11-8 PubMed
Immunogenetics. 1998 May;47(6):487-90 PubMed