Brainstem areas involved in the aspiration reflex: c-Fos study in anesthetized cats
Language English Country Czech Republic Media print
Document type Comparative Study, Journal Article, Research Support, Non-U.S. Gov't
PubMed
15588140
Knihovny.cz E-resources
- MeSH
- Anesthesia MeSH
- Evoked Potentials physiology MeSH
- Physical Stimulation methods MeSH
- Cats MeSH
- Brain Mapping methods MeSH
- Brain Stem physiology MeSH
- Inhalation physiology MeSH
- Neurons physiology MeSH
- Proto-Oncogene Proteins c-fos metabolism MeSH
- Reflex physiology MeSH
- Tissue Distribution MeSH
- Animals MeSH
- Check Tag
- Cats MeSH
- Male MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Comparative Study MeSH
- Names of Substances
- Proto-Oncogene Proteins c-fos MeSH
Expression of the immediate-early gene c-fos, a marker of neuronal activation was employed in adult anesthetized non-decerebrate cats, in order to localize the brainstem neuronal populations functionally related to sniff-like (gasp-like) aspiration reflex (AR). Tissues were immunoprocessed using an antibody raised against amino acids of Fos and the avidin-biotin peroxidase complex method. The level of Fos-like immunoreactivity (FLI) was identified and counted in particular brainstem sections under light microscopy using PC software evaluations in control, unstimulated cats and in cats where the AR was elicited by repeated mechanical stimulation of the nasopharyngeal region. Fourteen brainstem regions with FLI labeling, including thirty-seven nuclei were compared for the number of labeled cells. Compared to the control, a significantly enhanced FLI was determined bilaterally in animals with the AR, at various medullary levels. The areas included the nuclei of the solitary tract (especially the dorsal, interstitial and ventrolateral subnuclei), the ventromedial part of the parvocellular tegmental field (FTL -- lateral nuclei of reticular formation), the lateral reticular nucleus, the ambigual and para-ambigual regions, and the retrofacial nucleus. FLI was also observed in the gigantocellular tegmental field (FTG -- medial nuclei of reticular formation), the spinal trigeminal nucleus, in the medullar raphe nuclei (ncl. raphealis magnus and parvus), and in the medial and lateral vestibular nuclei. Within the pons, a significant FLI was observed bilaterally in the parabrachial nucleus (especially in its lateral subnucleus), the Kolliker-Fuse nucleus, the nucleus coeruleus, within the medial region of brachium conjunctivum, in the ventrolateral part of the pontine FTG and the FTL. Within the mesencephalon a significantly enhanced FLI was found at the central tegmental field (area ventralis tegmenti Tsai), bilaterally. Positive FLI found in columns extending from the caudal medulla oblongata, through the pons up to the mid-mesencephalon suggests that the aspiration reflex is thus co-ordinated by a long loop of medullary-pontine-mesencephalic control circuit rather than by a unique "center".