Stimulation of pigment accumulation in Anabaena azollae strains: effect of light intensity and sugars
Language English Country United States Media print
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
16821712
DOI
10.1007/bf02931450
Knihovny.cz E-resources
- MeSH
- Anabaena chemistry growth & development metabolism radiation effects MeSH
- Bacterial Proteins analysis isolation & purification MeSH
- Pigments, Biological analysis MeSH
- Electrophoresis, Polyacrylamide Gel MeSH
- Phycocyanin analysis MeSH
- Phycoerythrin analysis MeSH
- Glucose metabolism MeSH
- Carotenoids analysis MeSH
- Carbohydrate Metabolism * MeSH
- Proteome analysis MeSH
- Plant Extracts metabolism MeSH
- Saccharum metabolism MeSH
- Sucrose metabolism MeSH
- Light * MeSH
- Light-Harvesting Protein Complexes analysis MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Bacterial Proteins MeSH
- Pigments, Biological MeSH
- Phycocyanin MeSH
- Phycoerythrin MeSH
- Glucose MeSH
- Gur MeSH Browser
- Carotenoids MeSH
- Proteome MeSH
- Plant Extracts MeSH
- Sucrose MeSH
- Light-Harvesting Protein Complexes MeSH
The influence of high light intensity on the growth and pigment accumulating ability of Anabaena azollae was investigated. A. azollae responded positively to high light intensity (6 klx) and was further evaluated at higher intensities (10 and 15 klx), in the presence of glucose, sucrose and jaggery +/- DCMU. Significant enhancement in phycobiliproteins and carotenoids was observed in the sugar supplemented cultures at high light intensities. SDS-PAGE profiles of whole cell proteins revealed the presence of unique bands in such treatments. Sucrose supplementation induced a 30-90 % increase in carotenoids, phycocyanin and phycoerythrin content at 10 klx. Molecular analysis of the stimulatory and interactive role of sugars on pigment enhancement at high light intensity may aid in better exploitation of cyanobacteria as a source of pigments.
See more in PubMed
J Biol Chem. 2001 Jan 5;276(1):306-14 PubMed
Curr Opin Genet Dev. 1991 Oct;1(3):336-41 PubMed
Plant Physiol. 1992 Mar;98(3):1003-10 PubMed
Folia Microbiol (Praha). 2004;49(1):26-30 PubMed
Plant Physiol. 1980 Oct;66(4):592-5 PubMed
Microbiology (Reading). 2004 Apr;150(Pt 4):1031-1040 PubMed
Microb Ecol. 2004 Feb;47(2):164-74 PubMed
Plant Cell. 2001 Apr;13(4):793-806 PubMed
Folia Microbiol (Praha). 2004;49(1):64-70 PubMed
Plant Physiol. 1994 Oct;106(2):747-754 PubMed
Plant Physiol. 1983 Jul;72(3):829-32 PubMed
Nature. 1970 Aug 15;227(5259):680-5 PubMed
Photosynth Res. 2003;76(1-3):207-15 PubMed
Folia Microbiol (Praha). 2005;50(5):363-91 PubMed
Folia Microbiol (Praha). 2004;49(4):435-40 PubMed
Bacteriol Rev. 1971 Jun;35(2):171-205 PubMed
Science. 1985 Nov 15;230(4727):818-20 PubMed
Developing biochemical and molecular markers for cyanobacterial inoculants
Vegetative survival of some wall and soil blue-green algae under stress conditions
Genetic diversity among and within cultured cyanobionts of diverse species of Azolla