Production of lignocellulose-degrading enzymes and changes in soil bacterial communities during the growth of Pleurotus ostreatus in soil with different carbon content
Language English Country United States Media print
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
17455795
DOI
10.1007/bf02931623
Knihovny.cz E-resources
- MeSH
- Bacteria growth & development MeSH
- Cellulose metabolism MeSH
- Fungal Proteins biosynthesis MeSH
- Laccase biosynthesis MeSH
- Lignin metabolism MeSH
- Peroxidases biosynthesis MeSH
- Pleurotus enzymology growth & development MeSH
- Soil MeSH
- Soil Microbiology * MeSH
- Carbon metabolism MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Cellulose MeSH
- Fungal Proteins MeSH
- Laccase MeSH
- Lignin MeSH
- lignocellulose MeSH Browser
- manganese peroxidase MeSH Browser
- Peroxidases MeSH
- Soil MeSH
- Carbon MeSH
The extracellular enzyme activity and changes in soil bacterial community during the growth of the ligninolytic fungus Pleurotus ostreatus were determined in nonsterile soil with low and high available carbon content. In soil with P. ostreatus, the activity of ligninolytic enzymes laccase and Mn-peroxidase was several orders of magnitude higher than in soil without the fungus. Addition of lignocellulose to soil increased the activity of cellulolytic fungi and the production of Mn-peroxidase by P. ostreatus. The counts of heterotrophic bacteria were more significantly affected by the presence of lignocellulose than by P. ostreatus. The effects of both substrate addition and time (succession) were more significant factors affecting the soil bacterial community than the presence of P. ostreatus. Bacterial community structure was affected by fungal colonization in low carbon soil, where a decrease of diversity and changes in substrate utilization profiles were detected.
See more in PubMed
Appl Environ Microbiol. 1991 Dec;57(12):3652-5 PubMed
Res Microbiol. 2006 Apr;157(3):248-53 PubMed
Biodegradation. 1999 Feb;10 (1):51-62 PubMed
Folia Microbiol (Praha). 1998;43(1):97-103 PubMed
FEMS Microbiol Ecol. 2004 Nov 1;50(3):245-53 PubMed
Biotechnol Bioeng. 2005 Jun 20;90(6):723-31 PubMed
Appl Environ Microbiol. 1996 Jul;62(7):2381-6 PubMed
Environ Microbiol. 2005 Mar;7(3):348-55 PubMed
Res Microbiol. 2005 Jun-Jul;156(5-6):670-6 PubMed
Bioresour Technol. 2001 Jan;76(2):113-7 PubMed
Microb Ecol. 1998 Nov;36(3):372-382 PubMed
FEMS Microbiol Rev. 2006 Mar;30(2):215-42 PubMed
Microb Ecol. 1988 Jul;16(1):17-29 PubMed
Anal Biochem. 1980 Jul 1;105(2):389-97 PubMed
Microbiol Res. 1997 Sep;152(3):315-8 PubMed
Folia Microbiol (Praha). 2003;48(1):76-82 PubMed
Folia Microbiol (Praha). 2005;50(2):155-60 PubMed
Appl Environ Microbiol. 1998 Aug;64(8):2853-8 PubMed
Environ Toxicol Chem. 2003 Jun;22(6):1238-43 PubMed
FEMS Microbiol Rev. 2005 Sep;29(4):795-811 PubMed
Appl Environ Microbiol. 2000 Jun;66(6):2471-8 PubMed
Appl Environ Microbiol. 1996 Oct;62(10):3697-703 PubMed
Appl Microbiol Biotechnol. 1996 Dec;46(5-6):653-9 PubMed
J Environ Sci Health A Tox Hazard Subst Environ Eng. 2001;36(7):1145-62 PubMed
Microb Ecol. 1997 Jul;34(1):1-10 PubMed
Appl Environ Microbiol. 2002 Jul;68(7):3442-8 PubMed
Degradation of PAHs by ligninolytic enzymes of Irpex lacteus
Autofluorescence of the fruiting body of the fungus Macrolepiota rhacodes