Dispersion interactions govern the strong thermal stability of a protein

Jazyk angličtina Země Německo Médium print

Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid17696186

Grantová podpora
GM 60239 NIGMS NIH HHS - United States

Rubredoxin from the hyperthermophile Pyrococcus furiosus (Pf Rd) is an extremely thermostable protein, which makes it an attractive subject of protein folding and stability studies. A fundamental question arises as to what the reason for such extreme stability is and how it can be elucidated from a complex set of interatomic interactions. We addressed this issue first theoretically through a computational analysis of the hydrophobic core of the protein and its mutants, including the interactions taking place inside the core. Here we show that a single mutation of one of phenylalanine's residues inside the protein's hydrophobic core results in a dramatic decrease in its thermal stability. The calculated unfolding Gibbs energy as well as the stabilization energy differences between a few core residues follows the same trend as the melting temperature of protein variants determined experimentally by microcalorimetry measurements. NMR spectroscopy experiments have shown that the only part of the protein affected by mutation is the reasonably rearranged hydrophobic core. It is hence concluded that stabilization energies, which are dominated by London dispersion, represent the main source of stability of this protein.

Citace poskytuje Crossref.org

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

The accuracy of quantum chemical methods for large noncovalent complexes

. 2013 Aug 13 ; 9 (8) : 3364-3374.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...