Impact of mitochondrial function on yeast susceptibility to antifungal compounds
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
17702459
DOI
10.1007/bf02931302
Knihovny.cz E-zdroje
- MeSH
- antifungální látky farmakologie MeSH
- buněčná stěna fyziologie MeSH
- fosfatidylglyceroly genetika metabolismus MeSH
- fungální léková rezistence genetika MeSH
- kardiolipiny genetika metabolismus MeSH
- Kluyveromyces účinky léků genetika MeSH
- mikrobiální testy citlivosti MeSH
- mitochondriální DNA genetika MeSH
- mitochondrie genetika fyziologie MeSH
- mutace MeSH
- Saccharomyces cerevisiae účinky léků genetika MeSH
- transport elektronů * účinky léků genetika MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- antifungální látky MeSH
- fosfatidylglyceroly MeSH
- kardiolipiny MeSH
- mitochondriální DNA MeSH
Saccharomyces cerevisiae pell and crd1 mutants deficient in the biosynthesis of mitochondrial phosphatidylglycerol (PG) and cardiolipin (CL) as well as Kluyveromyces lactis mutants impaired in the respiratory chain function (RCF) containing dysfunctional mitochondria show altered sensitivity to metabolic inhibitors. The S. cerevisiae pell mutant displayed increased sensitivity to cycloheximide, chloramphenicol, oligomycin and the cell-wall perturbing agents caffeine, caspofungin and hygromycin. On the other hand, the pel1 mutant was less sensitive to fluconazole, similarly as the K. lactis mutants impaired in the function of mitochondrial cytochromes. Mitochondrial dysfunction resulting either from the absence of PG and CL or impairment of the RCF presumably renders the cells more resistant to fluconazole. The increased tolerance of K. lactis respiratory chain mutants to amphotericin B, caffeine and hygromycin is probably related to a modification of the cell wall.
Zobrazit více v PubMed
Biochim Biophys Acta. 1980 Oct 16;602(1):201-6 PubMed
Biochem Biophys Res Commun. 2000 Dec 20;279(2):378-82 PubMed
Curr Genet. 1996 Jul 31;30(2):145-50 PubMed
Curr Genet. 1990 Dec;18(6):517-22 PubMed
Yeast. 1998 Dec;14(16):1471-510 PubMed
Genetics. 1997 Oct;147(2):435-50 PubMed
FEBS Lett. 1998 Jan 2;421(1):15-8 PubMed
Curr Genet. 1993 Oct;24(4):307-12 PubMed
J Biol Chem. 1998 Apr 17;273(16):9829-36 PubMed
Biochem J. 2002 May 15;364(Pt 1):317-22 PubMed
J Biol Chem. 1990 Jul 25;265(21):12711-6 PubMed
J Biol Chem. 2004 Oct 8;279(41):42612-8 PubMed
J Biol Chem. 2001 Dec 21;276(51):47844-52 PubMed
J Biol Chem. 2001 Jul 6;276(27):25262-72 PubMed
J Biol Chem. 2000 Dec 1;275(48):37347-56 PubMed
Genetics. 2001 Nov;159(3):929-38 PubMed
Antimicrob Agents Chemother. 2004 May;48(5):1600-13 PubMed
Biochem Soc Trans. 2005 Nov;33(Pt 5):1206-9 PubMed
J Gen Appl Microbiol. 2001 Feb;47(1):21-26 PubMed
Biochemistry (Mosc). 2005 Feb;70(2):154-8 PubMed
J Biol Chem. 2003 Sep 12;278(37):34998-5015 PubMed
Curr Genet. 1997 Oct;32(4):267-72 PubMed
Prog Lipid Res. 2000 May;39(3):257-88 PubMed
J Biol Chem. 2003 Sep 12;278(37):35204-10 PubMed
FEMS Microbiol Lett. 1996 Jun 15;140(1):43-7 PubMed
J Antimicrob Chemother. 2000 Aug;46(2):191-7 PubMed
J Biol Chem. 1994 Jan 21;269(3):1940-4 PubMed
Biochem Biophys Res Commun. 1968 Feb 15;30(3):232-9 PubMed
Mol Biol Cell. 2005 Feb;16(2):665-75 PubMed
FEBS Lett. 1974 Jun 15;42(3):309-13 PubMed
Antonie Van Leeuwenhoek. 1964;30:1-9 PubMed
Res Microbiol. 1998 Feb;149(2):109-18 PubMed
J Biol Chem. 2000 Jul 21;275(29):22387-94 PubMed
Mol Gen Genet. 1992 May;233(1-2):97-105 PubMed
Folia Microbiol (Praha). 2005;50(4):293-9 PubMed
Curr Genet. 1998 Oct;34(4):297-302 PubMed
J Biol Chem. 2003 Dec 26;278(52):52873-80 PubMed
FEBS Lett. 2002 Mar 27;515(1-3):25-8 PubMed