• This record comes from PubMed

Analysis of the hybrid proline-rich protein families from seven plant species suggests rapid diversification of their sequences and expression patterns

. 2007 Nov 12 ; 8 () : 412. [epub] 20071112

Language English Country England, Great Britain Media electronic

Document type Journal Article, Research Support, Non-U.S. Gov't

BACKGROUND: Plant hybrid proline-rich proteins (HyPRPs) are putative cell wall proteins consisting, usually, of a repetitive proline-rich (PR) N-terminal domain and a conserved eight-cysteine motif (8 CM) C-terminal domain. Understanding the evolutionary dynamics of HyPRPs might provide not only insight into their so far elusive function, but also a model for other large protein families in plants. RESULTS: We have performed a phylogenetic analysis of HyPRPs from seven plant species, including representatives of gymnosperms and both monocot and dicot angiosperms. Every species studied possesses a large family of 14-52 HyPRPs. Angiosperm HyPRPs exhibit signs of recent major diversification involving, at least in Arabidopsis and rice, several independent tandem gene multiplications. A distinct subfamily of relatively well-conserved C-type HyPRPs, often with long hydrophobic PR domains, has been identified. In most of gymnosperm (pine) HyPRPs, diversity appears within the C-type group while angiosperms have only a few of well-conserved C-type representatives. Atypical (glycine-rich or extremely short) N-terminal domains apparently evolved independently in multiple lineages of the HyPRP family, possibly via inversion or loss of sequences encoding proline-rich domains. Expression profiles of potato and Arabidopsis HyPRP genes exhibit instances of both overlapping and complementary organ distribution. The diversified non-C-type HyPRP genes from recently amplified chromosomal clusters in Arabidopsis often share their specialized expression profiles. C-type genes have broader expression patterns in both species (potato and Arabidopsis), although orthologous genes exhibit some differences. CONCLUSION: HyPRPs represent a dynamically evolving protein family apparently unique to seed plants. We suggest that ancestral HyPRPs with long proline-rich domains produced the current diversity through ongoing gene duplications accompanied by shortening, modification or loss of the proline-rich domains. Most of the diversity in gymnosperms and angiosperms originates from different branches of the HyPRP family. Rapid sequence diversification is consistent with only limited requirements for structure conservation and, together with high variability of gene expression patterns, limits the interpretation of any functional study focused on a single HyPRP gene or a couple of HYPRP genes in single plant species.

See more in PubMed

Jose M, Puigdomenech P. Structure and expression of genes coding for structural proteins of plant cell wall. New Phytol. 1993;125:259–282. doi: 10.1111/j.1469-8137.1993.tb03881.x. PubMed DOI

Jose-Estanyol M, Gomis-Ruth FX, Puigdomenech P. The eight-cysteine motif, a versatile structure in plant proteins. Plant Physiol Bioch. 2004;42:355–365. doi: 10.1016/j.plaphy.2004.03.009. PubMed DOI

Jose-Estanyol M, Puigdomenech P. Plant cell wall glycoproteins and their genes. Plant Physiol Bioch. 2000;38:97–108. doi: 10.1016/S0981-9428(00)00165-0. DOI

Baud F, Pebay-Peyroula E, Cohen-Addad C, Odani S, Lehmann MS. Crystal structure of hydrophobic protein from soybean; a member of a new cysteine-rich family. J Mol Biol. 1993;231:877–887. doi: 10.1006/jmbi.1993.1334. PubMed DOI

Gincel E, Simorre JP, Caille A, Marion D, Ptak M, Vovelle F. Three-dimensional structure in solution of a wheat lipid-transfer protein from multidimensional 1H-NMR data. A new folding for lipid carriers. Eur J Biochem. 1994;226:413–422. doi: 10.1111/j.1432-1033.1994.tb20066.x. PubMed DOI

Deutch Ch, Winicov I. Post-transcriptional regulation of a salt-inducible alfalfa gene encoding a putative chimeric proline-rich cell wall protein. Plant Mol Biol. 1995;27:411–418. doi: 10.1007/BF00020194. PubMed DOI

Castonguay Y, Laberge S, Nadeau P, Vezina LP. A cold-induced gene from Medicago sativa encodes a bimodular protein similar to developmentally regulated proteins. Plant Mol Biol. 1994;24:799–804. doi: 10.1007/BF00029861. PubMed DOI

Goodwin W, Pallas JA, Jenkins GI. Transcripts of a gene encoding a putative cell wall-plasma membrane linker protein are specifically cold-induced in Brassica napus. Plant Mol Biol. 1996;31:771–781. doi: 10.1007/BF00019465. PubMed DOI

He CY, Zhang JS, Chen SY. A soybean gene encoding a proline-rich protein is regulated by salicylic acid, an endogenous circadian rhythm and by various stresses. Theor Appl Genet. 2002;104:1125–1131. doi: 10.1007/s00122-001-0853-5. PubMed DOI

Subramaniam K, Ranie J, Srijivasa BR, Achyut MS, Mahadevan S. Clonning and sequence of a cDNA encoding a novel hybrid proline-rich protein associated with cytokinin-induced haustoria formation in Cuscuta reflexa. Gene. 1994;141:207–210. doi: 10.1016/0378-1119(94)90572-X. PubMed DOI

Holk A, Klumpp L, Scherer GFE. A cell wall protein down-regulated by auxin suppressed cell expansion in Daucus carota (L.) Plant Mol Biol. 2002;50:295–305. doi: 10.1023/A:1016052613196. PubMed DOI

Blanco-Portales R, Lopez-Raez JA, Bellido ML, Moyano E, Dorado G, Gonzalez-Reyez JA, Caballero JL, Munoz-Blanco J. A strawberry fruit-specific and ripening-related gene codes for a HyPRP protein involved in polyphenol anchoring. Plant Mol Biol. 2004;55:763–780. PubMed

Bouton S, Viau L, Lelievre E, Limami AM. A gene encoding a protein with a proline-rich domain (MtPPRD1), revealed by suppressive substractive hybridization (SSH), is specifically expressed in the Medicago truncatula embryo axis during germination. J Exp Bot. 2005;56:825–832. doi: 10.1093/jxb/eri077. PubMed DOI

Jose-Estanyol M, Ruiz-Avila L, Puigdomenech P. A maize embryo-specific genes encode a proline-rich and hydrophobic protein. Plant Cell. 1992;4:413–423. doi: 10.1105/tpc.4.4.413. PubMed DOI PMC

Wu HM, Zou J, May B, Gu Q, Cheung AY. A tobacco gene family for flower cell wall proteins with a proline-rich and cysteine-rich domain. PNAS. 1993;90:6829–6833. doi: 10.1073/pnas.90.14.6829. PubMed DOI PMC

Salt Y, Wachs R, Gruissem W, Barg R. Sequence coding for a novel proline-rich protein preferentially expressed in young tomato fruit. Plant Mol Biol. 1991;17:149–150. doi: 10.1007/BF00036818. PubMed DOI

Fischer L, Lovas A, Opatrny Z, Banfalvi Z. Structure and expression of a hybrid proline-rich protein gene in the Solanaceous species, Solanum brevidens, Solanum tuberosum and Lycopersicum esculentum. J Plant Physiol. 2002;159:1271–1275. doi: 10.1078/0176-1617-00744. DOI

Zimmermann P, Hirsch-Hoffmann M, Hennig L, Gruissem W. GENEVESTIGATOR. Arabidopsis Microarray Database and Analysis Toolbox. Plant Physiol. 2004;136:2621–2632. doi: 10.1104/pp.104.046367. PubMed DOI PMC

Arondel V, Vergnolle Ch, Cantrel C, Kader J-C. Lipid transfer proteins are encoded by a small multigene family in Arabidopsis thaliana. Plant Sci. 2000;157:1–12. doi: 10.1016/S0168-9452(00)00232-6. PubMed DOI

Cvrckova F, Novotny M, Pickova D, Zarsky V. Formin homology 2 domains occur in multiple contexts in angiosperms. BMC Genomics. 2004;5:44. doi: 10.1186/1471-2164-5-44. PubMed DOI PMC

Kader JC. Lipid-transfer proteins: a puzzling family of plant proteins. Trends Plant Sci. 1997;2:66–70. doi: 10.1016/S1360-1385(97)82565-4. DOI

Brinkman FSL, Leipe DD. Phylogenetic analysis. In: Baxevanis AD, Ouelette BFF, editor. Bioinformatics: a practical guide to the analysis of genes and proteins. New York: Wiley Interscience; 2001. pp. 323–358.

Showalter AM. Arabinogalactan-proteins: structure, expression and function. CMLS. 2001;58:1399–1417. doi: 10.1007/PL00000784. PubMed DOI PMC

Kieliszewski MJ, Lamport DTA. Extensin: repetitive motifs, functional sites, post-translation codes and phylogeny. Plant J. 1994;5:157–172. doi: 10.1046/j.1365-313X.1994.05020157.x. PubMed DOI

Han GW, Lee JY, Song HK, Chang C, Min K, Moon J, Shin DH, Kopka ML, Sawaya MR, Yuan HS, Kim TD, Choe J, Lim D, Moon HJ, Suh SW. Structural basis of non-specific lipid binding in maize lipid-transfer protein complexes revealed by high-resolution X-ray crystallography. J Mol Biol. 2001;308:263–78. doi: 10.1006/jmbi.2001.4559. PubMed DOI

Cheng HCh, Cheng PT, Peng P, Lyu PCh, Sun YJ. Lipid binding in rice nonspecific lipid transfer protein-1 complexes from Oryza sativa. Protein Sci. 2004;13:2304–2315. doi: 10.1110/ps.04799704. PubMed DOI PMC

The SOL Genomics Network

Mueller LA, Solow TH, Taylor N, Skwarecki B, Buels R, Binns J, Lin C, Wright MH, Ahrens R, Wang Y, Herbst EV, Keyder ER, Menda N, Zamir D, Tanksley SD. The SOL Genomics Network. a comparative resource for Solanaceae biology and beyond. Plant Physiol. 2005;138:1310–1317. doi: 10.1104/pp.105.060707. PubMed DOI PMC

The Arabidopsis Information Resource

Garcia-Hernandez M, Berardini TZ, Chen G, Crist D, Doyle A, Huala E, Knee E, Lambrecht M, Miller N, Mueller LA, Mundodi S, Reiser L, Rhee SY, Scholl R, Tacklind J, Weems DC, Wu Y, Xu I, Yoo D, Yoon J, Zhang P. TAIR: a resource for integrated Arabidopsis data. Funct Integr Genomics. 2002;2:239–253. doi: 10.1007/s10142-002-0077-z. PubMed DOI

J Craig Venter Institute

Ouyang S, Zhu W, Hamilton J, Lin H, Campbell M, Childs K, Thibaud-Nissen F, Malek RL, Lee Y, Zheng , Orvis J, Haas B, Wortman J, Bueel CR. The TIGR Rice Genome Annotation Resource: improvements and new features. Nucleic Acids Res. 2007;35:D883–D887. doi: 10.1093/nar/gkl976. PubMed DOI PMC

Plant Genom DataBase

Dong Q, Lawrence CJ, Schlueter SD, Wilkerson MD, Kurtz S, Lushbough C, Brendel V. Comparative Plant Genomics Resources at PlantGDB. Plant Physiology. 2005;139:610–618. doi: 10.1104/pp.104.059212. PubMed DOI PMC

Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997;25:3389–3402. doi: 10.1093/nar/25.17.3389. PubMed DOI PMC

Banfalvi Z, Molnar A, Molnar G, Lakatos L, Szabo L. Starch synthesis-, and tuber storage protein genes are differently expressed in Solanum tuberosum and in Solanum brevidens. FEBS Lett. 1996;383:159–164. doi: 10.1016/0014-5793(96)00234-7. PubMed DOI

Stothard P. The Sequence Manipulation Suite: JavaScript programs for analyzing and formatting protein and DNA sequences. Biotechniques. 2000;28:1102–1104. PubMed

Heger A, Holm L. Rapid automatic detection and alignment of repeats in protein sequences. Proteins. 2000;41:224–237. doi: 10.1002/1097-0134(20001101)41:2<224::AID-PROT70>3.0.CO;2-Z. PubMed DOI

The European Bioinformatics Institute

Bendtsen JD, Nielsen H, von Heijne G, Brunak S. Improved prediction of signal peptides: SignalP 3.0. J Mol Biol. 2004;340:783–795. doi: 10.1016/j.jmb.2004.05.028. PubMed DOI

Genevestigator

Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 1997;24:4876–4882. doi: 10.1093/nar/25.24.4876. PubMed DOI PMC

Hall TA. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl Acids Symp Ser. 1999;41:95–98.

MyHits

Pagni M, Ioannidis V, Cerutti L, Zahn-Zabal M, Jongeneel1 CV, Falquet L. MyHits: a new interactive resource for protein annotation and domain identification. Nucl Acids Res. 2004;32:W332–W335. doi: 10.1093/nar/gkh479. PubMed DOI PMC

Van de Peer Y, De Wachter R. TREECON for Windows: a software package for the construction and drawing of evolutionary trees for the Microsoft Windows environment. Comput Appl Biosci. 1994;10:569–570. PubMed

Felsenstein J. Maximum likelihood and minimum-steps methods for estimating evolutionary trees from data on discrete characters. Syst Zool. 1973;22:240–249. doi: 10.2307/2412304. DOI

Guindon S, Gascuel O. A simple, fast an accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol. 2003;52:696–704. doi: 10.1080/10635150390235520. PubMed DOI

Felsenstein J. Phylogenies from molecular sequences – inference and reliability. Ann Rev Genet. 1988;22:521–565. doi: 10.1146/annurev.ge.22.120188.002513. PubMed DOI

PHYLIP package

Stiekema WJ, Heidekamp F, Dirkse WG, Vanbeckum J, Dehaan P, Tenbosch C, Louwerse JD. Molecular-cloning and analysis of 4 potato-tuber messenger-Rnas. Plant Mol Biol. 1988;11:255–269. doi: 10.1007/BF00027383. PubMed DOI

Linsmayer EM, Skoog F. Organic growth factor requirements of tobacco tissue cultures. Physiol Plantarum. 1965;18:100–127. doi: 10.1111/j.1399-3054.1965.tb06874.x. DOI

Nicot N, Hausman JF, Hoffmann L, Evers D. Housekeeping gene selection for real-time RT-PCR normalization in potato during biotic and abiotic stress. J Exp Bot. 2005;56:2907–2914. doi: 10.1093/jxb/eri285. PubMed DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...