Imatinib therapy of chronic myeloid leukemia significantly reduces carnitine cell intake, resulting in adverse events

. 2024 Oct ; 88 () : 102016. [epub] 20240823

Jazyk angličtina Země Německo Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39182842
Odkazy

PubMed 39182842
PubMed Central PMC11403060
DOI 10.1016/j.molmet.2024.102016
PII: S2212-8778(24)00147-9
Knihovny.cz E-zdroje

OBJECTIVE: A prominent, safe and efficient therapy for patients with chronic myeloid leukemia (CML) is inhibiting oncogenic protein BCR::ABL1 in a targeted manner with imatinib, a tyrosine kinase inhibitor. A substantial part of patients treated with imatinib report skeletomuscular adverse events affecting their quality of life. OCTN2 membrane transporter is involved in imatinib transportation into the cells. At the same time, the crucial physiological role of OCTN2 is cellular uptake of carnitine which is an essential co-factor for the mitochondrial β-oxidation pathway. This work investigates the impact of imatinib treatment on carnitine intake and energy metabolism of muscle cells. METHODS: HTB-153 (human rhabdomyosarcoma) cell line and KCL-22 (CML cell line) were used to study the impact of imatinib treatment on intracellular levels of carnitine and vice versa. The energy metabolism changes in cells treated by imatinib were quantified and compared to changes in cells exposed to highly specific OCTN2 inhibitor vinorelbine. Mouse models were used to test whether in vitro observations are also achieved in vivo in thigh muscle tissue. The analytes of interest were quantified using a Prominence HPLC system coupled with a tandem mass spectrometer. RESULTS: This work showed that through the carnitine-specific transporter OCTN2, imatinib and carnitine intake competed unequally and intracellular carnitine concentrations were significantly reduced. In contrast, carnitine preincubation did not influence imatinib cell intake or interfere with leukemia cell targeting. Blocking the intracellular supply of carnitine with imatinib significantly reduced the production of most Krebs cycle metabolites and ATP. However, subsequent carnitine supplementation rescued mitochondrial energy production. Due to specific inhibition of OCTN2 activity, the influx of carnitine was blocked and mitochondrial energy metabolism was impaired in muscle cells in vitro and in thigh muscle tissue in a mouse model. CONCLUSIONS: This preclinical experimental study revealed detrimental effect of imatinib on carnitine-mediated energy metabolism of muscle cells providing a possible molecular background of the frequently occurred side effects during imatinib therapy such as fatigue, muscle pain and cramps.

Zobrazit více v PubMed

Carroll M., Ohno-Jones S., Tamura S., Buchdunger E., Zimmermann J., Lydon N.B., et al. CGP 57148, a tyrosine kinase inhibitor, inhibits the growth of cells expressing BCR-ABL, TEL-ABL, and TEL-PDGFR fusion proteins. Blood. 1997;90(12):4947–4952. PubMed

Kalmanti L., Saussele S., Lauseker M., Muller M.C., Dietz C.T., Heinrich L., et al. Safety and efficacy of imatinib in CML over a period of 10 years: data from the randomized CML-study IV. Leukemia. 2015;29(5):1123–1132. PubMed

Kekale M., Peltoniemi M., Airaksinen M. Patient-reported adverse drug reactions and their influence on adherence and quality of life of chronic myeloid leukemia patients on per oral tyrosine kinase inhibitor treatment. Patient Prefer Adherence. 2015;9:1733–1740. PubMed PMC

Efficace F., Rosti G., Aaronson N., Cottone F., Angelucci E., Molica S., et al. Patient- versus physician-reporting of symptoms and health status in chronic myeloid leukemia. Haematologica. 2014;99(4):788–793. PubMed PMC

Saglio G., Kim D.W., Issaragrisil S., le Coutre P., Etienne G., Lobo C., et al. Nilotinib versus imatinib for newly diagnosed chronic myeloid leukemia. N Engl J Med. 2010;362(24):2251–2259. PubMed

Kantarjian H.M., Shah N.P., Cortes J.E., Baccarani M., Agarwal M.B., Undurraga M.S., et al. Dasatinib or imatinib in newly diagnosed chronic-phase chronic myeloid leukemia: 2-year follow-up from a randomized phase 3 trial (DASISION) Blood. 2012;119(5):1123–1129. PubMed PMC

Khoury H.J., Cortes J.E., Kantarjian H.M., Gambacorti-Passerini C., Baccarani M., Kim D.W., et al. Bosutinib is active in chronic phase chronic myeloid leukemia after imatinib and dasatinib and/or nilotinib therapy failure. Blood. 2012;119(15):3403–3412. PubMed PMC

Cortes J.E., Kim D.W., Pinilla-Ibarz J., le Coutre P.D., Paquette R., Chuah C., et al. Ponatinib efficacy and safety in Philadelphia chromosome-positive leukemia: final 5-year results of the phase 2 PACE trial. Blood. 2018;132(4):393–404. PubMed PMC

Hughes T.P., Mauro M.J., Cortes J.E., Minami H., Rea D., DeAngelo D.J., et al. Asciminib in chronic myeloid leukemia after ABL kinase inhibitor failure. N Engl J Med. 2019;381(24):2315–2326. PubMed PMC

Hu S., Franke R.M., Filipski K.K., Hu C., Orwick S.J., de Bruijn E.A., et al. Interaction of imatinib with human organic ion carriers. Clin Cancer Res. 2008;14(10):3141–3148. PubMed

Houten S.M., Wanders R.J. A general introduction to the biochemistry of mitochondrial fatty acid beta-oxidation. J Inherit Metab Dis. 2010;33(5):469–477. PubMed PMC

Steiber A., Kerner J., Hoppel C.L. Carnitine: a nutritional, biosynthetic, and functional perspective. Mol Aspect Med. 2004;25(5–6):455–473. PubMed

Longo N., Amat di San Filippo C., Pasquali M. Disorders of carnitine transport and the carnitine cycle. Am J Med Genet C Semin Med Genet. 2006;142C(2):77–85. PubMed PMC

Rose E.C., di San Filippo C.A., Ndukwe Erlingsson U.C., Ardon O., Pasquali M., Longo N. Genotype-phenotype correlation in primary carnitine deficiency. Hum Mutat. 2012;33(1):118–123. PubMed PMC

Demetri G.D., von Mehren M., Blanke C.D., Van den Abbeele A.D., Eisenberg B., Roberts P.J., et al. Efficacy and safety of imatinib mesylate in advanced gastrointestinal stromal tumors. N Engl J Med. 2002;347(7):472–480. PubMed

Lynch K.E., Feldman H.I., Berlin J.A., Flory J., Rowan C.G., Brunelli S.M. Effects of L-carnitine on dialysis-related hypotension and muscle cramps: a meta-analysis. Am J Kidney Dis. 2008;52(5):962–971. PubMed

Nakanishi H., Kurosaki M., Tsuchiya K., Nakakuki N., Takada H., Matsuda S., et al. L-Carnitine reduces muscle cramps in patients with cirrhosis. Clin Gastroenterol Hepatol. 2015;13(8):1540–1543. PubMed

Kumar V., Singh P., Gupta S.K., Ali V., Verma M. Transport and metabolism of tyrosine kinase inhibitors associated with chronic myeloid leukemia therapy: a review. Mol Cell Biochem. 2022;477(4):1261–1279. PubMed

Curik N., Polivkova V., Burda P., Koblihova J., Laznicka A., Kalina T., et al. Somatic mutations in oncogenes are in chronic myeloid leukemia acquired de novo via deregulated base-excision repair and alternative non-homologous end joining. Front Oncol. 2021;11 PubMed PMC

Mehta S.S., Fallon M.B. Muscle cramps in cirrhosis: a moving target. Clin Gastroenterol Hepatol. 2015;13(8):1544–1546. PubMed

Pekala J., Patkowska-Sokola B., Bodkowski R., Jamroz D., Nowakowski P., Lochynski S., et al. L-carnitine--metabolic functions and meaning in humans life. Curr Drug Metabol. 2011;12(7):667–678. PubMed

Janssen L., Frambach S., Allard N.A.E., Hopman M.T.E., Schirris T.J.J., Voermans N.C., et al. Skeletal muscle toxicity associated with tyrosine kinase inhibitor therapy in patients with chronic myeloid leukemia. Leukemia. 2019;33(8):2116–2120. PubMed PMC

Boros L.G., Cascante M., Lee W.N. Metabolic profiling of cell growth and death in cancer: applications in drug discovery. Drug Discov Today. 2002;7(6):364–372. PubMed

Serkova N., Boros L.G. Detection of resistance to imatinib by metabolic profiling: clinical and drug development implications. Am J PharmacoGenomics. 2005;5(5):293–302. PubMed

Gottschalk S., Anderson N., Hainz C., Eckhardt S.G., Serkova N.J. Imatinib (STI571)-mediated changes in glucose metabolism in human leukemia BCR-ABL-positive cells. Clin Cancer Res. 2004;10(19):6661–6668. PubMed

Kominsky D.J., Klawitter J., Brown J.L., Boros L.G., Melo J.V., Eckhardt S.G., et al. Abnormalities in glucose uptake and metabolism in imatinib-resistant human BCR-ABL-positive cells. Clin Cancer Res. 2009;15(10):3442–3450. PubMed

De Rosa V., Monti M., Terlizzi C., Fonti R., Del Vecchio S., Iommelli F. Coordinate modulation of glycolytic enzymes and OXPHOS by imatinib in BCR-ABL driven chronic myelogenous leukemia cells. Int J Mol Sci. 2019;20(13) PubMed PMC

Bouitbir J., Panajatovic M.V., Frechard T., Roos N.J., Krahenbuhl S. Imatinib and dasatinib provoke mitochondrial dysfunction leading to oxidative stress in C2C12 myotubes and human RD cells. Front Pharmacol. 2020;11:1106. PubMed PMC

Damaraju V.L., Kuzma M., Cass C.E., Putman C.T., Sawyer M.B. Multitargeted kinase inhibitors imatinib, sorafenib and sunitinib perturb energy metabolism and cause cytotoxicity to cultured C2C12 skeletal muscle derived myotubes. Biochem Pharmacol. 2018;155:162–171. PubMed

Chae H., Ryu M.H., Ma J., Beck M., Kang Y.K. Impact of L-carnitine on imatinib-related muscle cramps in patients with gastrointestinal stromal tumor. Invest N Drugs. 2020;38(2):493–499. PubMed

Chewcharat A., Chewcharat P., Liu W., Cellini J., Phipps E.A., Melendez Young J.A., et al. The effect of levocarnitine supplementation on dialysis-related hypotension: a systematic review, meta-analysis, and trial sequential analysis. PLoS One. 2022;17(7) PubMed PMC

Peng B., Hayes M., Resta D., Racine-Poon A., Druker B.J., Talpaz M., et al. Pharmacokinetics and pharmacodynamics of imatinib in a phase I trial with chronic myeloid leukemia patients. J Clin Oncol. 2004;22(5):935–942. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...