Filament formation in Saccharomyces cerevisiae--a review
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, přehledy
- MeSH
- biosyntetické dráhy MeSH
- genetická transkripce MeSH
- mastné alkoholy metabolismus MeSH
- regulace genové exprese u hub MeSH
- Saccharomyces cerevisiae - proteiny genetika metabolismus MeSH
- Saccharomyces cerevisiae cytologie genetika růst a vývoj metabolismus MeSH
- signální transdukce MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- mastné alkoholy MeSH
- Saccharomyces cerevisiae - proteiny MeSH
Many yeasts can produce filamentous elongated cells identifiable as hyphae, pseudohyphae or invasive filaments. Filament formation has been understood as a foraging response that occurs in nutrient-poor conditions. However, fusel alcohols were observed to induce filament formation in rich nutrient conditions in every yeast species examined. Fusel alcohols, e.g., 3-methyl-1-butanol (3Me-BuOH; 'isoamyl alcohol'), 2-methyl-1-propanol (isobutyl alcohol), (-)-2-methyl-1-butanol ('active amyl alcohol'), 2-phenylethanol and 3-(2-hydroxyethyl)indole (tryptophol) (the end products of leucine, valine, isoleucine, phenylalanine and tryptophan catabolism, respectively) are the end products of amino acid catabolism that accumulate when nutrients become limiting. Thus, yeast responds to its own metabolic by-products. Considerable effort was made to define the cell biological and biochemical changes that take place during 3Me-BuOH-induced filamentation. In Saccharomyces cerevisiae filaments contain significantly greater mitochondrial mass and increased chitin content in comparison with yeast-form cells. The global transcriptional response of S. cerevisiae during the early stages of 3Me-BuOH-induced filament formation has been described. Four ORFs displayed very significant (more than 10-fold) increases in their RNA species, and 12 ORFs displayed increases in transcription of more than 5-fold. The transcription of five genes (all of which encode transporters) decreased by similar amounts. Where examined, the activity of the proteins encoded reflected the transcriptional pattern of their respective mRNAs. To understand this regulation, studies were performed to see whether deletion or overexpression of key genes affects the ability to filament and invade solid YEPD medium. This has led to identification of those proteins that are essential for filament formation, repressors and those which are simply not required. It also leads to the conclusion that 3Me-BuOH-induced filament formation is not a foraging response but a response to reduced growth rate.
Zobrazit více v PubMed
FEBS Lett. 1998 Jun 23;430(1-2):116-25 PubMed
J Biol Chem. 1985 Nov 25;260(27):14464-70 PubMed
J Biol Chem. 1984 Aug 10;259(15):9790-8 PubMed
Yeast. 1998 May;14(7):623-31 PubMed
FEMS Microbiol Lett. 1994 Jun 1;119(1-2):99-103 PubMed
Genetics. 2001 Jun;158(2):549-62 PubMed
Yeast. 2003 Apr 30;20(6):545-54 PubMed
Microbiology (Reading). 1998 May;144 ( Pt 5):1319-1330 PubMed
Mol Biol Cell. 2000 Jan;11(1):183-99 PubMed
Mol Cell Biol. 1994 Jan;14(1):104-15 PubMed
J Cell Sci. 2003 Aug 15;116(Pt 16):3423-31 PubMed
Genes Dev. 2006 May 1;20(9):1150-61 PubMed
Curr Opin Cell Biol. 1995 Dec;7(6):845-55 PubMed
J Biol Chem. 1997 Apr 18;272(16):10839-46 PubMed
Yeast. 2005 Oct 15;22(13):1069-77 PubMed
Proteins. 2005 Sep 1;60(4):778-86 PubMed
Curr Genet. 1999 Dec;36(6):317-28 PubMed
Biochem J. 2005 Oct 15;391(Pt 2):311-6 PubMed
Genetics. 2006 Jun;173(2):621-34 PubMed
J Bacteriol. 1998 May;180(9):2556-9 PubMed
J Biol Chem. 1997 Oct 24;272(43):26871-8 PubMed
FEMS Yeast Res. 2002 Aug;2(3):283-91 PubMed
J Biol Chem. 2003 Mar 7;278(10):8028-34 PubMed
Yeast. 2006 Apr 15;23(5):389-98 PubMed
Mol Cell Biol. 1994 Apr;14(4):2740-54 PubMed
Curr Opin Microbiol. 2001 Dec;4(6):720-7 PubMed
Mol Cell Biol. 1994 Oct;14(10):6597-606 PubMed
Microbiology (Reading). 1996 Jun;142 ( Pt 6):1391-1397 PubMed
EMBO J. 2001 Nov 15;20(22):6464-74 PubMed
J Bacteriol. 1994 Sep;176(18):5802-13 PubMed
J Biol Chem. 2000 Apr 14;275(15):10937-42 PubMed
Proc Natl Acad Sci U S A. 2004 Apr 6;101(14):5048-52 PubMed
J Biol Chem. 2001 Feb 2;276(5):3555-63 PubMed
Cell. 1992 Mar 20;68(6):1077-90 PubMed
Yeast. 1998 May;14(7):617-22 PubMed
EMBO J. 1998 Aug 10;17(5):1236-47 PubMed
Mol Biol Cell. 2003 Dec;14(12):5116-24 PubMed
FEMS Yeast Res. 2004 Oct;5(1):43-9 PubMed
Eur J Biochem. 1999 Apr;261(1):163-70 PubMed
Yeast. 2002 Sep 15;19(12):1029-38 PubMed
Microbiology (Reading). 1998 Dec;144 ( Pt 12):3475-3485 PubMed
Eukaryot Cell. 2005 Jul;4(7):1287-97 PubMed
FEMS Yeast Res. 2007 Jan;7(1):84-92 PubMed
J Biol Chem. 1998 Oct 2;273(40):25751-6 PubMed
Yeast. 2001 Dec;18(16):1515-24 PubMed
Yeast. 1999 Sep 30;15(13):1377-91 PubMed