Analysis of STAT1 activation by six FGFR3 mutants associated with skeletal dysplasia undermines dominant role of STAT1 in FGFR3 signaling in cartilage
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
P01 HD022657
NICHD NIH HHS - United States
PubMed
19088846
PubMed Central
PMC2597732
DOI
10.1371/journal.pone.0003961
Knihovny.cz E-zdroje
- MeSH
- bezbuněčný systém metabolismus MeSH
- biologické modely MeSH
- CHO buňky MeSH
- chrupavka metabolismus MeSH
- Cricetulus MeSH
- extracelulárním signálem regulované MAP kinasy metabolismus MeSH
- fosforylace MeSH
- HeLa buňky MeSH
- kosti a kostní tkáň patologie MeSH
- křečci praví MeSH
- krysa rodu Rattus MeSH
- kultivované buňky MeSH
- lidé MeSH
- mutantní proteiny fyziologie MeSH
- receptor fibroblastových růstových faktorů, typ 3 genetika fyziologie MeSH
- signální transdukce genetika fyziologie MeSH
- transkripční faktor STAT1 analýza metabolismus fyziologie MeSH
- vývojové onemocnění kostí genetika metabolismus patologie MeSH
- zvířata MeSH
- Check Tag
- křečci praví MeSH
- krysa rodu Rattus MeSH
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- extracelulárním signálem regulované MAP kinasy MeSH
- mutantní proteiny MeSH
- receptor fibroblastových růstových faktorů, typ 3 MeSH
- transkripční faktor STAT1 MeSH
Activating mutations in FGFR3 tyrosine kinase cause several forms of human skeletal dysplasia. Although the mechanisms of FGFR3 action in cartilage are not completely understood, it is believed that the STAT1 transcription factor plays a central role in pathogenic FGFR3 signaling. Here, we analyzed STAT1 activation by the N540K, G380R, R248C, Y373C, K650M and K650E-FGFR3 mutants associated with skeletal dysplasias. In a cell-free kinase assay, only K650M and K650E-FGFR3 caused activatory STAT1(Y701) phosphorylation. Similarly, in RCS chondrocytes, HeLa, and 293T cellular environments, only K650M and K650E-FGFR3 caused strong STAT1 activation. Other FGFR3 mutants caused weak (HeLa) or no activation (293T and RCS). This contrasted with ERK MAP kinase activation, which was strongly induced by all six mutants and correlated with the inhibition of proliferation in RCS chondrocytes. Thus the ability to activate STAT1 appears restricted to the K650M and K650E-FGFR3 mutants, which however account for only a small minority of the FGFR3-related skeletal dysplasia cases. Other pathways such as ERK should therefore be considered as central to pathological FGFR3 signaling in cartilage.
Zobrazit více v PubMed
Passos-Bueno MR, Wilcox WR, Jabs EW, Sertié AL, Alonso LG, et al. Clinical spectrum of fibroblast growth factor receptor mutations. Hum Mutat. 1999;14:115–125. PubMed
Horton WA, Hall JG, Hecht JT. Achondroplasia. Lancet. 2007;370:162–172. PubMed
Ornitz DM. FGF signaling in the developing endochondral skeleton. Cytokine Growth Factor Rev. 2005;16:205–213. PubMed PMC
L'Hôte CGM, Knowles MA. Cell responses to FGFR3 signaling: growth, differentiation and apoptosis. Exp Cell Res. 2005;304:417–431. PubMed
Su W-CS, Kitagawa M, Xue N, Xie B, Garofalo S, et al. Activation of Stat1 by mutant fibroblast growth-factor receptor in thanatophoric dysplasia type II dwarfism. Nature. 1997;386:288–291. PubMed
Hart KC, Robertson SC, Donoghue DJ. Identification of tyrosine residues in constitutively activated fibroblast growth factor receptor 3 involved in mitogenesis, stat activation, and phosphatidylinositol 3-kinase activation. Mol Biol Cell. 2001;12:931–942. PubMed PMC
Ronchetti D, Greco A, Compasso S, Colombo G, Dell'Era P. Deregulated FGFR3 mutants in multiple myeloma cell lines with t(4;14): comparative analysis of Y373C, K650E and the novel G384D mutations. Oncogene. 2001;20:3553–3562. PubMed
Lievens PM-J, Mutinelli C, Baynes D, Liboi E. The kinase activity of fibroblast growth factor receptor 3 with activation loop mutations affects receptor trafficking and signaling. J Biol Chem. 2004;279:43254–43260. PubMed
Nowroozi N, Raffioni S, Wang T, Apostol BL, Bradshaw RA. Sustained Erk1/2 but not STAT1 or 3 activation is required for thanatophoric dysplasia phenotypes in PC12 cells. Hum Mol Genet. 2005;14:1529–1538. PubMed
Harada D, Yamanaka Y, Ueda K, Nishimura R, Morishima T. Sustained phosphorylation of mutated FGFR3 is crucial feature of genetics dwarfism and induces apoptosis in the ATDC5 chondrogenic cell line via PLCγ-activated STAT1. Bone. 2007;41:273–281. PubMed
Krejci P, Kashiwada TA, Goodridge HS, Salazar L, Schibler M, et al. STAT1 and STAT3 do not participate in fibroblast growth factor-mediated growth arrest in chondrocytes. J Cell Sci. 2008;121:272–281. PubMed
Legeai-Mallet L, Benoist-Lasselin C, Munnich A, Bonaventure J. Overexpression of FGFR3, Stat1, Stat5 and p21Cip1 correlates with phenotypic severity and defective chondrocyte differentiation in FGFR3-related chondrodysplasias. Bone. 2004;34:26–36. PubMed
Li C, Chen L, Iwata T, Kitagawa M, Fu X, et al. A lys644glu substitution in fibroblast growth factor receptor 3 (FGFR3) causes dwarfism in mice by activation of STATs and ink4 cell cycle inhibitors. Hum Mol Genet. 1999;8:35–41. PubMed
Sahni M, Ambrosetti D, Mansukhani A, Gertner R, Levy D, et al. FGF signaling inhibits chondrocyte proliferation and regulates bone development through the STAT-1 pathway. Genes Dev. 1999;13:1361–1366. PubMed PMC
Sahni M, Raz R, Coffin JD, Levy D, Basilico C. Stat1 mediates the increased apoptosis and reduced chondrocyte proliferation in mice overexpressing FGF2. Development. 2001;128:2119–2129. PubMed
Murakami S, Balmes G, McKinney S, Zhang Z, Givol D, et al. Constitutive activation of MEK1 in chondrocytes causes Stat1-independent achondroplasia-like dwarfism and rescues the Fgfr3-deficient mouse phenotype. Genes Dev. 2004;18:290–305. PubMed PMC
Raucci A, Laplantine E, Mansukhani A, Basilico C. Activation of the Erk1/2 and p38 mitogen-activated protein kinase pathways mediates fibroblast growth factor-induced growth arrest of chondrocytes. J Biol Chem. 2004;279:1747–1756. PubMed
Krejci P, Bryja V, Pachernik J, Hampl A, Pogue R, et al. FGF2 inhibits proliferation and alters the cartilage-like phenotype of RCS cells. Exp Cell Res. 2004;297:152–164. PubMed
Matsushita T, Wilcox WR, Chan YY, Kawanami A, Bukulmez H, et al. FGFR3 promotes synchondrosis closure and fusion of ossification centers through the MAPK pathway. Hum Mol Genet. In press 2008 PubMed PMC
Colvin JS, Bohne BA, Harding GW, McEwen DG, Ornitz DM. Skeletal overgrowth and deafness in mice lacking fibroblast growth factor receptor 3. Nat Genet. 1996;12:390–397. PubMed
Hart KC, Robertson SC, Kanemitsu MY, Meyer AN, et al. Transformation and Stat activation by derivatives of FGFR1, FGFR3, and FGFR4. Oncogene. 2000;19:3309–3320. PubMed
Lievens PM-J, Liboi E. The thanatophoric dysplasia type II mutation hampers complete maturation of fibroblast growth factor receptor 3 (FGFR3), which activates signal transducer and activator of transcription 1 (STAT1) from the endoplasmic reticulum. J Biol Chem. 2003;278:17344–17349. PubMed
Krejci P, Masri B, Salazar L, Farrington-Rock C, Prats H, et al. Bisindolylmaleimide I suppresses fibroblast growth factor-mediated activation of Erk MAP kinase in chondrocytes by preventing Shp2 association with the Frs2 and Gab1 adaptor proteins. J Biol Chem. 2007;282:2929–2936. PubMed
d'Avis PY, Robertson SC, Meyer AN, Bardwell WM, Webster MK, et al. Constitutive activation of fibroblast growth factor receptor 3 by mutations responsible for the lethal skeletal dysplasia thanatophoric dysplasia type I. Cell Growth Diff. 1998;9:71–78. PubMed
Webster MK, d'Avis PY, Robertson SC, Donoghue DJ. Profound ligand-independent kinase activation of fibroblast growth factor receptor 3 by the activation loop mutation responsible for a lethal skeletal dysplasia, thanatophoric dysplasia type II. Mol Cell Biol. 1996;16:4081–4087. PubMed PMC
Aikawa T, Segre GV, Lee K. Fibroblast growth factor inhibits chondrocytic growth through induction of p21 and subsequent inactivation of cyclin E-Cdk2. J Biol Chem. 2001;276:29347–29352. PubMed
Rozenblatt-Rosen O, Mosonego-Ornan E, Sadot E, Madar-Shapiro L, Sheinin Y, et al. Induction of chondrocyte growth arrest by FGF: transcriptional and cytoskeletal alterations. J Cell Sci. 2002;115:553–562. PubMed
Krejci P, Masri B, Fontaine V, Mekikian PB, Weis M, et al. Interaction of fibroblast growth factor and C-natriuretic peptide signaling in regulation of chondrocyte proliferation and extracellular matrix homeostasis. J Cell Sci. 2005;118:5089–5100. PubMed
Dailey L, Laplantine E, Priore R, Basilico C. A network of transcriptional and signaling events is activated by FGF to induce chondrocyte growth arrest and differentiation. J Cell Biol. 2003;161:1053–1066. PubMed PMC
Yasoda A, Komatsu Y, Chusho H, Miyazawa T, Ozasa A, et al. Overexpression of CNP in chondrocytes rescues achondroplasia through a MAPK-dependent pathway. Nat Med. 2004;10:80–86. PubMed
Legeai-Mallet L, Benoist-Lasselin C, Delezoide A, Munnich A, Bonaventure J. Fibroblast growth factor receptor 3 mutations promote apoptosis but do not alter chondrocyte proliferation in thanatophoric dysplasia. J Biol Chem. 1998;273:13007–13014. PubMed
Plowright EE, Li Z, Bergsagel PL, Chesi M, Barber DL, et al. Ectopic expression of fibroblast growth factor receptor 3 promotes myeloma cell proliferation and prevents apoptosis. Blood. 2000;95:992–998. PubMed
Aaronson DS, Horvath CM. A road map for those who don't know JAK-STAT. Science. 2002;296:1653–1655. PubMed