Changes in the localization of collagens IV and VIII in corneas obtained from patients with posterior polymorphous corneal dystrophy
Language English Country Great Britain, England Media print-electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
19162009
DOI
10.1016/j.exer.2008.12.017
PII: S0014-4835(08)00439-9
Knihovny.cz E-resources
- MeSH
- Basement Membrane metabolism pathology MeSH
- Bowman Membrane metabolism pathology MeSH
- Corneal Dystrophies, Hereditary metabolism pathology MeSH
- Adult MeSH
- Immunoenzyme Techniques MeSH
- Collagen Type VIII metabolism MeSH
- Collagen Type IV metabolism MeSH
- Middle Aged MeSH
- Humans MeSH
- Adolescent MeSH
- Young Adult MeSH
- Cornea metabolism MeSH
- Aged MeSH
- Check Tag
- Adult MeSH
- Middle Aged MeSH
- Humans MeSH
- Adolescent MeSH
- Young Adult MeSH
- Male MeSH
- Aged MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Collagen Type VIII MeSH
- Collagen Type IV MeSH
Posterior polymorphous corneal dystrophy (PPCD) is a hereditary bilateral disorder affecting primarily the endothelium and Descemet's membrane (DM). The aim of this study was to determine the changes in the presence and localization of the alpha1-alpha6 collagen IV chains and alpha1, alpha2 collagen VIII chains in Czech patients with PPCD. Twelve corneal buttons from ten PPCD patients who underwent corneal grafting, as well as eight unaffected corneas, were used. Enzymatic indirect immunohistochemistry was performed on cryosections using antibodies against the alpha1-alpha6 collagen IV chains and alpha1, alpha2 collagen VIII chains. The intensity of the signal was examined separately in the basal membrane of the epithelium (BME), stroma and DM. More than 50% of PPCD specimens exhibited positivity for alpha1 and alpha2 collagen IV chains in the BME and in the posterior stroma, while no staining was detected in these areas in control specimens. The signal for the alpha1 and alpha2 collagen IV chains was more intense in DM of PPCD corneas compared to controls and it was shifted from the stromal side (in control tissue) to the endothelial side of DM (in the patients). A less intensive signal in PPCD corneas for the alpha3 and alpha5 chains in DM and an accumulation of alpha3-alpha5 in the posterior stroma in diseased corneas were the only differences in staining for the alpha3-alpha6 collagen IV chains. The alpha1 collagen VIII chain was detected on both the endothelial and the stromal sides of DM in 90% of patients with PPCD, compared with the prevailing localization on the stromal side of DM in control corneas. A change in the localization of the alpha2 collagen VIII chain in DM from vertically striated features in control specimens to double line positivity in the DM of PPCD corneas and positive staining in the posterior collagenous layer of four patients were also detected. In three PPCD patients a fibrous pannus located under the BME, positive for alpha1-alpha3, alpha5 collagen IV chains and alpha1 collagen VIII chain, was observed. The increased expression of the alpha1, alpha2 collagen IV and alpha1 collagen VIII chains and the change in their localization in DM may contribute to the increased endothelial proliferative capacity observed in PPCD patients.
References provided by Crossref.org