Purification and biochemical characterization of thermostable alkaline phosphatases produced by Rhizopus microsporus var. rhizopodiformis
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
- MeSH
- alkalická fosfatasa izolace a purifikace metabolismus MeSH
- chromatografie agarózová MeSH
- chromatografie DEAE-celulózová MeSH
- elektroforéza v polyakrylamidovém gelu MeSH
- fungální proteiny izolace a purifikace metabolismus MeSH
- gelová chromatografie MeSH
- kationty farmakologie MeSH
- koncentrace vodíkových iontů MeSH
- molekulová hmotnost MeSH
- Rhizopus enzymologie MeSH
- vysoká teplota MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- alkalická fosfatasa MeSH
- fungální proteiny MeSH
- kationty MeSH
The biochemical properties of the alkaline phosphatases (AlPs) produced by Rhizopus microsporus are described. High enzymic levels were produced within 1-2 d in agitated cultures with 1 % wheat bran. Intra- and extracellular AlPs were purified 5.0 and 9.3x, respectively, by DEAE-cellulose and ConA-sepharose chromatography. Molar mass of 118 and 120 kDa was estimated by gel filtration for both forms of phosphatases. SDS-PAGE indicated dimeric structures of 57 kDa for both forms. Mn(2+), Na(+) and Mg(2+) stimulated the activity, while Al(3+) and Zn(2+) activated only the extracellular form. Optimum temperature and pH for both phosphatases were 65 degrees C and pH 8.0, respectively. The enzymes were stable at 50 degrees C for at least 15 min. Hydrolysis of 4-nitrophenyl phosphate exhibited a K (m) 0.28 and 0.22 mmol/L, with upsilon (lim) 5.89 and 4.84 U/mg, for intra- and extracellular phosphatases, respectively. The properties of the reported AlPs may be suitable for biotechnological application.
Zobrazit více v PubMed
Enzyme Microb Technol. 1997 Oct;21(5):335-40 PubMed
Mol Gen Genet. 1986 May;203(2):346-53 PubMed
Antonie Van Leeuwenhoek. 2000 Apr;77(3):215-22 PubMed
Braz J Med Biol Res. 2000 Aug;33(8):905-12 PubMed
Annu Rev Biochem. 1982;51:935-71 PubMed
Ann N Y Acad Sci. 1964 Dec 28;121:404-27 PubMed
FEMS Microbiol Lett. 1998 Apr 1;161(1):139-44 PubMed
Prep Biochem Biotechnol. 1996 Aug-Nov;26(3-4):171-81 PubMed
World J Microbiol Biotechnol. 1995 Sep;11(5):505-7 PubMed
Biochim Biophys Acta. 1976 Nov 8;452(1):121-30 PubMed
Biochemistry. 2002 Dec 24;41(51):15404-9 PubMed
Can J Microbiol. 1969 Jan;15(1):105-10 PubMed
Folia Microbiol (Praha). 2003;48(5):627-32 PubMed
J Biol Chem. 1983 Jan 10;258(1):386-95 PubMed
Trends Biochem Sci. 1992 Mar;17(3):105-10 PubMed
Nature. 1970 Aug 15;227(5259):680-5 PubMed
J Basic Microbiol. 2003;43(3):210-7 PubMed
Anal Biochem. 1981 May 15;113(2):313-7 PubMed
Microbiol Mol Biol Rev. 2006 Jun;70(2):440-9 PubMed
Folia Microbiol (Praha). 2006;51(6):541-5 PubMed
Biochem Int. 1992 Dec;28(4):633-41 PubMed
J Ind Microbiol Biotechnol. 2001 Oct;27(4):265-70 PubMed
Proc Natl Acad Sci U S A. 1962 Jul 15;48:1121-7 PubMed
Folia Microbiol (Praha). 2006;51(5):431-7 PubMed
Phytochemistry. 1996 Jan;41(1):71-5 PubMed
Biochem Mol Biol Educ. 2005 Nov;33(6):399-403 PubMed
Folia Microbiol (Praha). 2007;52(3):231-6 PubMed
Nature. 1961 Apr 1;190:29-31 PubMed
Biotechnol Appl Biochem. 2004 Oct;40(Pt 2):201-7 PubMed
Adv Enzymol Relat Areas Mol Biol. 1983;55:381-452 PubMed
J Appl Bacteriol. 1970 Mar;33(1):130-40 PubMed
Int J Biochem. 1992 May;24(5):839-45 PubMed
Biochim Biophys Acta. 1964 Aug 26;89:291-302 PubMed