Karyotypic relationships in Asiatic asses (kulan and kiang) as defined using horse chromosome arm-specific and region-specific probes

. 2009 ; 17 (6) : 783-90.

Jazyk angličtina Země Nizozemsko Médium print

Typ dokumentu srovnávací studie, časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid19731053

Cross-species chromosome painting has been applied to most of the species making up the numerically small family Equidae. However, comparative mapping data were still lacking in Asiatic asses kulan (Equus hemionus kulan) and kiang (E. kiang). The set of horse arm-specific probes generated by laser microdissection was hybridized onto kulan (E. hemionus kulan) and kiang (E. kiang) chromosomes in order to establish a genome-wide chromosomal correspondence between these Asiatic asses and the horse. Moreover, region-specific probes were generated to determine fusion configuration and orientation of conserved syntenic blocks. The kulan karyotype (2n = 54) was ascertained to be almost identical to the previously investigated karyotype of onager E. h. onager (2n = 56). The only difference is in fusion/fission of chromosomes homologous to horse 2q/3q, which are involved in chromosome number polymorphism in many Equidae species. E. kiang karyotype differs from the karyotype of E. hemionus by two additional fusions 8q/15 and 7/25. Chromosomes equivalent to 2q and 3q are not fused in kiang individuals with 2n = 52. Several discrepancies in centromere positions among kulan, kiang and horse chromosomes have been described. Most of the chromosome fusions in Asiatic asses are of centromere-centromere type. Comparative chromosome painting in kiang completed the efforts to establish chromosomal homologies in all representatives of the family Equidae. Application of region-specific probes allows refinement comparative maps of Asiatic asses.

Zobrazit více v PubMed

Chromosome Res. 2007;15(6):807-13 PubMed

Nat Genet. 1992 Apr;1(1):24-8 PubMed

Genes Chromosomes Cancer. 1992 Apr;4(3):257-63 PubMed

Syst Biol. 2008 Jun;57(3):503-7 PubMed

Chromosome Res. 2000;8(8):659-70 PubMed

Chromosome Res. 2008;16(1):89-107 PubMed

Cytogenet Cell Genet. 1978;21(4):177-83 PubMed

Lancet. 1971 Oct 30;2(7731):971-2 PubMed

Cytogenet Genome Res. 2002;96(1-4):206-9 PubMed

Cytogenet Cell Genet. 2001;93(3-4):291-6 PubMed

Chromosome Res. 2008;16(7):935-47 PubMed

Genomics. 1998 Jun 15;50(3):368-72 PubMed

Cytogenet Genome Res. 2007;116(4):263-8 PubMed

Nat Rev Genet. 2007 Dec;8(12):950-62 PubMed

Cytogenet Cell Genet. 1978;20(1-6):332-50 PubMed

Proc Natl Acad Sci U S A. 2008 Sep 23;105(38):14477-81 PubMed

Cytogenet Genome Res. 2003;102(1-4):217-21 PubMed

Cytogenet Genome Res. 2003;102(1-4):235-43 PubMed

Curr Opin Genet Dev. 1997 Dec;7(6):784-91 PubMed

Chromosome Res. 2002;10(7):571-7 PubMed

Chromosome Res. 1996 Apr;4(3):218-25 PubMed

Chromosome Res. 2004;12(1):65-76 PubMed

J Anim Breed Genet. 2005 Apr;122 Suppl 1:78-86 PubMed

Genetica. 1990;83(1):67-72 PubMed

Genomics. 2007 Jan;89(1):89-112 PubMed

Mamm Genome. 2005 Aug;16(8):631-49 PubMed

Chromosome Res. 1999;7(2):103-14 PubMed

Genomics. 2006 Jun;87(6):777-82 PubMed

Biotechniques. 1999 Aug;27(2):362-7 PubMed

J Mol Evol. 1998 Dec;47(6):772-83 PubMed

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Subchromosomal karyotype evolution in Equidae

. 2013 Apr ; 21 (2) : 175-87. [epub] 20130327

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace