Development and mapping of DArT markers within the Festuca - Lolium complex
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
19832973
PubMed Central
PMC2770082
DOI
10.1186/1471-2164-10-473
PII: 1471-2164-10-473
Knihovny.cz E-zdroje
- MeSH
- chromozomy rostlin MeSH
- DNA rostlinná genetika MeSH
- Festuca genetika MeSH
- fyzikální mapování chromozomů * MeSH
- genetická variace MeSH
- genetické markery MeSH
- genotyp MeSH
- jílek genetika MeSH
- sekvenční analýza DNA MeSH
- sekvenční analýza hybridizací s uspořádaným souborem oligonukleotidů metody MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- DNA rostlinná MeSH
- genetické markery MeSH
BACKGROUND: Grasses are among the most important and widely cultivated plants on Earth. They provide high quality fodder for livestock, are used for turf and amenity purposes, and play a fundamental role in environment protection. Among cultivated grasses, species within the Festuca-Lolium complex predominate, especially in temperate regions. To facilitate high-throughput genome profiling and genetic mapping within the complex, we have developed a Diversity Arrays Technology (DArT) array for five grass species: F. pratensis, F. arundinacea, F. glaucescens, L. perenne and L. multiflorum. RESULTS: The DArTFest array contains 7680 probes derived from methyl-filtered genomic representations. In a first marker discovery experiment performed on 40 genotypes from each species (with the exception of F. glaucescens for which only 7 genotypes were used), we identified 3884 polymorphic markers. The number of DArT markers identified in every single genotype varied from 821 to 1852. To test the usefulness of DArTFest array for physical mapping, DArT markers were assigned to each of the seven chromosomes of F. pratensis using single chromosome substitution lines while recombinants of F. pratensis chromosome 3 were used to allocate the markers to seven chromosome bins. CONCLUSION: The resources developed in this project will facilitate the development of genetic maps in Festuca and Lolium, the analysis on genetic diversity, and the monitoring of the genomic constitution of the Festuca x Lolium hybrids. They will also enable marker-assisted selection for multiple traits or for specific genome regions.
Zobrazit více v PubMed
Eurostat
Jauhar J. Cytogenetics of the Festuca-Lolium complex Relevance to Breeding. Berlin: Springer-Verlag; 1993.
Hackel E. Monographia Festucarum Europearum. Theodor Fischer, Kassel et al Berlin; 1882.
Clayton W, Renvoize S. Genera Graminum: Grasses of the World. Kew Bull. 1986;Add Ser 13:1–389.
Darbyshire SJ. Realignment of Festuca subgen Schedonorus with the genus Lolium (Poaceae) Novon. 1993;3:239–343. doi: 10.2307/3391460. DOI
Charmet G, Balfourier F. Isozyme Variation and Species Relationships in the Genus Lolium l (Ryegrasses, Graminaceae) Theoretical and Applied Genetics. 1994;87:641–649. doi: 10.1007/BF00222888. PubMed DOI
Kolliker R, Stadelmann FJ, Reidy B, Nosberger J. Genetic variability of forage grass cultivars: A comparison of Festuca pratensis Huds., Lolium perenne L., and Dactylis glomerata L. Euphytica. 1999;106:261–270. doi: 10.1023/A:1003598705582. DOI
Catalan P, Torrecilla P, Rodriguez JAL, Olmstead RG. Phylogeny of the festucoid grasses of subtribe Loliinae and allies (Poeae, Pooideae) inferred from ITS and trnL-F sequences. Molecular Phylogenetics and Evolution. 2004;31:517–541. doi: 10.1016/j.ympev.2003.08.025. PubMed DOI
Mian MAR, Saha MC, Hopkins AA, Wang ZY. Use of tall fescue EST-SSR markers in phylogenetic analysis of cool-season forage grasses. Genome. 2005;48:637–647. doi: 10.1139/g05-029. PubMed DOI
Peng Y, Zhang XQ, Deng YL, Ma X. Evaluation of genetic diversity in wild orchardgrass (Dactylis glomerata L.) based on AFLP markers. Hereditas. 2008;145:174–181. doi: 10.1111/j.0018-0661.2008.02038.x. DOI
Mehboob uR, Yasmin T, Tabbasam N, Ullah I, Asif M, Zafar Y. Studying the extent of genetic diversity among Gossypium arboreum L. genotypes/cultivars using DNA fingerprinting. Genetic Resources and Crop Evolution. 2008;55:331–339. doi: 10.1007/s10722-007-9238-1. DOI
Guthridge KM, Dupal MP, Kolliker R, Jones ES, Smith KF, Forster JW. AFLP analysis of genetic diversity within and between populations of perennial ryegrass (Lolium perenne L.) Euphytica. 2001;122:191–201. doi: 10.1023/A:1012658315290. DOI
Fjellheim S, Rognli OA. Genetic diversity within and among Nordic meadow fescue (Festuca pratensis Huds.) cultivars determined on the basis of AFLP markers. Crop Science. 2005;45:2081–2086. doi: 10.2135/cropsci2005.0091. DOI
Fjellheim S, Blomlie AB, Marum P, Rognli OA. Phenotypic variation in local populations and cultivars of meadow fescue - potential for improving cultivars by utilizing wild germplasm. Plant Breeding. 2007;126:279–286. doi: 10.1111/j.1439-0523.2007.01363.x. DOI
Hayward MD, Forster JW, Jones JG, Dolstra O, Evans C, Mcadam NJ, Hossain KG, Stammers M, Will J, Humphreys MO, et al. Genetic analysis of Lolium. I. Identification of linkage groups and the establishment of a genetic map. Plant Breeding. 1998;117:451–455. doi: 10.1111/j.1439-0523.1998.tb01972.x. DOI
Bert PF, Charmet G, Sourdille P, Hayward MD, Balfourier F. A high-density molecular map for ryegrass (Lolium perenne) using AFLP markers. Theoretical and Applied Genetics. 1999;99:445–452. doi: 10.1007/s001220051256. PubMed DOI
Jones ES, Dupal MP, Dumsday JL, Hughes LJ, Forster JW. An SSR-based genetic linkage map for perennial ryegrass (Lolium perenne L.) Theoretical and Applied Genetics. 2002;105:577–584. doi: 10.1007/s00122-002-0907-3. PubMed DOI
Jones ES, Mahoney NL, Hayward MD, Armstead IP, Jones JG, Humphreys MO, King IP, Kishida T, Yamada T, Balfourier F, et al. An enhanced molecular marker based genetic map of perennial ryegrass (Lolium perenne) reveals comparative relationships with other Poaceae genomes. Genome. 2002;45:282–295. doi: 10.1139/g01-144. PubMed DOI
Inoue M, Gao ZS, Hirata M, Fujimori M, Cai HW. Construction of a high-density linkage map of Italian ryegrass (Lolium multiflorum Lam.) using restriction fragment length polymorphism, amplified fragment length polymorphism, and telomeric repeat associated sequence markers. Genome. 2004;47:57–65. doi: 10.1139/g03-097. PubMed DOI
Hirata M, Cai HW, Inoue M, Yuyama N, Miura Y, Komatsu T, Takamizo T, Fujimori M. Development of simple sequence repeat (SSR) markers and construction of an SSR-based linkage map in Italian ryegrass (Lolium multiflorum Lam.) Theoretical and Applied Genetics. 2006;113:270–279. doi: 10.1007/s00122-006-0292-4. PubMed DOI
Miura Y, Hirata M, Fujimori M. Mapping of EST-derived CAPS markers in Italian ryegrass (Lolium multiflorum Lam.) Plant Breeding. 2007;126:353–360. doi: 10.1111/j.1439-0523.2007.01386.x. PubMed DOI
Studer B, Boller B, Bauer E, Posselt UK, Widmer F, Kolliker R. Consistent detection of QTLs for crown rust resistance in Italian ryegrass (Lolium multiflorum Lam.) across environments and phenotyping methods. Theoretical and Applied Genetics. 2007;115:9–17. doi: 10.1007/s00122-007-0535-z. PubMed DOI
Studer B, Boller B, Herrmann D, Bauer E, Posselt UK, Widmer F, Koelliker R. Genetic mapping reveals a single major QTL for bacterial wilt resistance in Italian ryegrass (Lolium multiflorum Lam.) Theoretical and Applied Genetics. 2006;113:661–671. doi: 10.1007/s00122-006-0330-2. PubMed DOI
Muylle H, Baert J, Van Bockstaele E, Pertijs J, Roldan-Ruiz I. Four QTLs determine crown rust (Puccinia coronata f. sp lolii) resistance in a perennial ryegrass (Lolium perenne) population. Heredity. 2005;95:348–357. doi: 10.1038/sj.hdy.6800729. PubMed DOI
Yamada T, Jones ES, Cogan NOI, Vecchies AC, Nomura T, Hisano H, Shimamoto Y, Smith KF, Hayward MD, Forster JW. QTL analysis of morphological, developmental, and winter hardiness-associated traits in perennial ryegrass. Crop Science. 2004;44:925–935.
Turner LB, Cairns AJ, Armstead IP, Ashton J, Skot K, Whittaker D, Humphreys MO. Dissecting the regulation of fructan metabolism in perennial ryegrass (Lolium perenne) with quantitative trait locus mapping. New Phytologist. 2006;169:45–57. doi: 10.1111/j.1469-8137.2005.01575.x. PubMed DOI
Studer B, Jensen LB, Hentrup S, Brazauskas G, Kolliker R, Lubberstedt T. Genetic characterisation of seed yield and fertility traits in perennial ryegrass (Lolium perenne L.) Theoretical and Applied Genetics. 2008;117:781–791. doi: 10.1007/s00122-008-0819-y. PubMed DOI
Alm V, Fang C, Busso CS, Devos KM, Vollan K, Grieg Z, Rognli OA. A linkage map of meadow fescue (Festuca pratensis Huds.) and comparative mapping with other Poaceae species. Theoretical and Applied Genetics. 2003;108:25–40. doi: 10.1007/s00122-003-1399-5. PubMed DOI
Saha MC, Mian R, Zwonitzer JC, Chekhovskiy K, Hopkins AA. An SSR- and AFLP-based genetic linkage map of tall fescue (Festuca arundinacea Schreb.) Theoretical and Applied Genetics. 2005;110:323–336. doi: 10.1007/s00122-004-1843-1. PubMed DOI
Zhang Y, Mian MAR, Bouton JH. Recent molecular and genomic studies on stress tolerance of forage and turf grasses. Crop Science. 2006;46:497–511. doi: 10.2135/cropsci2004.0572. DOI
Kopecky D, Loureiro J, Zwierzykowski Z, Ghesquiere M, Dolezel J. Genome constitution and evolution in Lolium × Festuca hybrid cultivars (Festulolium) Theoretical and Applied Genetics. 2006;113:731–742. doi: 10.1007/s00122-006-0341-z. PubMed DOI
Lukaszewski AJ, Lapinski B, Rybka K. Limitations of in situ hybridization with total genomic DNA in routine screening for alien introgressions in wheat. Cytogenetic and Genome Research. 2005;109:373–377. doi: 10.1159/000082422. PubMed DOI
Gupta PK, Rustgi S, Mir RR. Array-based high-throughput DNA markers for crop improvement. Heredity. 2008;101:5–18. doi: 10.1038/hdy.2008.35. PubMed DOI
Jaccoud D, Peng K, Feinstein D, Kilian A. Diversity Arrays: a solid state technology for sequence information independent genotyping. Nucleic Acids Research. 2001;29:e25. doi: 10.1093/nar/29.4.e25. PubMed DOI PMC
Wittenberg AHJ, Lee T van der, Cayla C, Kilian A, Visser RGF, Schouten HJ. Validation of the high-throughput marker technology DArT using the model plant Arabidopsis thaliana. Molecular Genetics and Genomics. 2005;274:30–39. doi: 10.1007/s00438-005-1145-6. PubMed DOI
Wenzl P, Carling J, Kudrna D, Jaccoud D, Huttner E, Kleinhofs A, Kilian A. Diversity Arrays Technology (DArT) for whole-genome profiling of barley. Proceedings of the National Academy of Sciences of the United States of America. 2004;101:9915–9920. doi: 10.1073/pnas.0401076101. PubMed DOI PMC
Wenzl P, Li HB, Carling J, Zhou MX, Raman H, Paul E, Hearnden P, Maier C, Xia L, Caig V, et al. A high-density consensus map of barley linking DArT markers to SSR, RFLP and STS loci and agricultural traits. Bmc Genomics. 2006;7:206. doi: 10.1186/1471-2164-7-206. PubMed DOI PMC
Akbari M, Wenzl P, Caig V, Carling J, Xia L, Yang SY, Uszynski G, Mohler V, Lehmensiek A, Kuchel H, et al. Diversity arrays technology (DArT) for high-throughput profiling of the hexaploid wheat genome. Theoretical and Applied Genetics. 2006;113:1409–1420. doi: 10.1007/s00122-006-0365-4. PubMed DOI
White J, Law JR, MacKay I, Chalmers KJ, Smith JSC, Kilian A, Powell W. The genetic diversity of UK, US and Australian cultivars of Triticum aestivum measured by DArT markers and considered by genome. Theoretical and Applied Genetics. 2008;116:439–453. doi: 10.1007/s00122-007-0681-3. PubMed DOI
Yang SY, Pang W, Ash G, Harper J, Carling J, Wenzl P, Huttner E, Zong XX, Kilian A. Low level of genetic diversity in cultivated pigeonpea compared to its wild relatives is revealed by diversity arrays technology. Theoretical and Applied Genetics. 2006;113:585–595. doi: 10.1007/s00122-006-0317-z. PubMed DOI
Mace ES, Xia L, Jordan DR, Halloran K, Parh DK, Huttner E, Wenzl P, Kilian A. DArT markers: diversity analyses and mapping in Sorghum bicolor. Bmc Genomics. 2008;9:26. doi: 10.1186/1471-2164-9-26. PubMed DOI PMC
Paux E, Sourdille P, Salse J, Saintenac C, Choulet F, Leroy P, Korol A, Michalak M, Kianian S, Spielmeyer W, et al. A physical map of the 1-gigabase bread wheat chromosome 3B. Science. 2008;322:101–104. doi: 10.1126/science.1161847. PubMed DOI
Fjellheim S, Rognli OA, Fosnes K, Brochmann C. Recent bottlenecking in the widespread meadow fescue (Festuca pratensis Huds.) inferred from chloroplast DNA sequences. Journal of Biogeography. 2005;33:1470–1478. doi: 10.1111/j.1365-2699.2006.01521.x. DOI
Balfourier F, Imbert C, Charmet G. Evidence for phylogeographic structure in Lolium species related to the spread of agriculture in Europe. A cpDNA study. Theoretical and Applied Genetics. 2000;101:131–138. doi: 10.1007/s001220051461. DOI
Lukaszewski AJ. Manipulation of the 1RS.1BL translocation in wheat by induced homoeologous recombination. Crop Science. 2000;40:216–225.
Kopecky D, Lukaszewski AJ, Dolezel J. Meiotic behaviour of individual chromosomes of Festuca pratensis in tetraploid Lolium multiflorum. Chromosome Research. 2008;16:987–998. doi: 10.1007/s10577-008-1256-0. PubMed DOI
King J, Armstead IP, Donnison IS, Thomas HM, Jones RN, Kearsey MJ, Roberts LA, Thomas A, Morgan WG, King IP. Physical and genetic mapping in the grasses Lolium perenne and Festuca pratensis. Genetics. 2002;161:315–324. PubMed PMC
King J, Armstead IP, Donnison IS, Harper JA, Roberts LA, Thomas H, Ougham H, Thomas A, Huang L, King IP. Introgression mapping in the grasses. Chromosome Research. 2007;15:105–113. doi: 10.1007/s10577-006-1103-0. PubMed DOI
Felsenstein J. PHYLIP-phylogeny inference package (Version 3.2) Cladistics. 1989. pp. 164–166.
Felsenstein J. PHYLIP (Phylogeny Inference Package). (3.6) University of Washington, Seattle; 2004.
Flow sorting and sequencing meadow fescue chromosome 4F
Genomic constitution of Festuca × Lolium hybrids revealed by the DArTFest array