Performance of optimized McRAPD in identification of 9 yeast species frequently isolated from patient samples: potential for automation
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu srovnávací studie, časopisecké články, práce podpořená grantem
PubMed
19903328
PubMed Central
PMC2779194
DOI
10.1186/1471-2180-9-234
PII: 1471-2180-9-234
Knihovny.cz E-zdroje
- MeSH
- algoritmy MeSH
- automatizace metody MeSH
- Candida klasifikace genetika izolace a purifikace MeSH
- DNA fungální genetika MeSH
- druhová specificita MeSH
- genotyp MeSH
- lidé MeSH
- mykologické určovací techniky metody MeSH
- reprodukovatelnost výsledků MeSH
- Saccharomyces cerevisiae klasifikace genetika izolace a purifikace MeSH
- shluková analýza MeSH
- technika náhodné amplifikace polymorfní DNA metody MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- srovnávací studie MeSH
- Názvy látek
- DNA fungální MeSH
BACKGROUND: Rapid, easy, economical and accurate species identification of yeasts isolated from clinical samples remains an important challenge for routine microbiological laboratories, because susceptibility to antifungal agents, probability to develop resistance and ability to cause disease vary in different species. To overcome the drawbacks of the currently available techniques we have recently proposed an innovative approach to yeast species identification based on RAPD genotyping and termed McRAPD (Melting curve of RAPD). Here we have evaluated its performance on a broader spectrum of clinically relevant yeast species and also examined the potential of automated and semi-automated interpretation of McRAPD data for yeast species identification. RESULTS: A simple fully automated algorithm based on normalized melting data identified 80% of the isolates correctly. When this algorithm was supplemented by semi-automated matching of decisive peaks in first derivative plots, 87% of the isolates were identified correctly. However, a computer-aided visual matching of derivative plots showed the best performance with average 98.3% of the accurately identified isolates, almost matching the 99.4% performance of traditional RAPD fingerprinting. CONCLUSION: Since McRAPD technique omits gel electrophoresis and can be performed in a rapid, economical and convenient way, we believe that it can find its place in routine identification of medically important yeasts in advanced diagnostic laboratories that are able to adopt this technique. It can also serve as a broad-range high-throughput technique for epidemiological surveillance.
Zobrazit více v PubMed
Hobson RP. The global epidemiology of invasive Candida infections - is the tide turning? J Hosp Infect. 2003;55:159–168. doi: 10.1016/j.jhin.2003.08.012. quiz 233. PubMed DOI
Warnock DW. Trends in the epidemiology of invasive fungal infections. Nippon Ishinkin Gakkai Zasshi. 2007;48:1–12. doi: 10.3314/jjmm.48.1. PubMed DOI
Krcmery V, Barnes AJ. Non-albicans Candida spp. causing fungaemia: pathogenicity and antifungal resistance. J Hosp Infect. 2002;50:243–260. doi: 10.1053/jhin.2001.1151. PubMed DOI
Freydiere AM, Guinet R, Boiron P. Yeast identification in the clinical microbiology laboratory: phenotypical methods. Med Mycol. 2001;39:9–33. doi: 10.1080/714030980. PubMed DOI
Trtkova J, Raclavsky V. Molecular-genetic approaches to identification and typing of pathogenic Candida yeasts. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 2006;150:51–61. PubMed
Plachy R, Hamal P, Raclavsky V. McRAPD as a new approach to rapid and accurate identification of pathogenic yeasts. J Microbiol Methods. 2005;60:107–113. doi: 10.1016/j.mimet.2004.09.003. PubMed DOI
Steffan P, Vazquez JA, Boikov D, Xu C, Sobel JD, Akins RA. Identification of Candida species by randomly amplified polymorphic DNA fingerprinting of colony lysates. J Clin Microbiol. 1997;35:2031–2039. PubMed PMC
Tavanti A, Davidson AD, Fordyce MJ, Gow NA, Maiden MC, Odds FC. Population structure and properties of Candida albicans, as determined by multilocus sequence typing. J Clin Microbiol. 2005;43:5601–5613. doi: 10.1128/JCM.43.11.5601-5613.2005. PubMed DOI PMC
McManus BA, Coleman DC, Moran G, Pinjon E, Diogo D, Bougnoux ME, Borecka-Melkusova S, Bujdakova H, Murphy P, d'Enfert C, Sullivan DJ. Multilocus sequence typing reveals that the population structure of Candida dubliniensis is significantly less divergent than that of Candida albicans. J Clin Microbiol. 2008;46:652–664. doi: 10.1128/JCM.01574-07. PubMed DOI PMC
Jacobsen MD, Davidson AD, Li SY, Shaw DJ, Gow NA, Odds FC. Molecular phylogenetic analysis of Candida tropicalis isolates by multi-locus sequence typing. Fungal Genet Biol. 2008;45:1040–1042. doi: 10.1016/j.fgb.2008.03.011. PubMed DOI
Lin D, Wu LC, Rinaldi MG, Lehmann PF. Three distinct genotypes within Candida parapsilosis from clinical sources. J Clin Microbiol. 1995;33:1815–1821. PubMed PMC
Roy B, Meyer SA. Confirmation of the distinct genotype groups within the form species Candida parapsilosis. J Clin Microbiol. 1998;36:216–218. PubMed PMC
Tavanti A, Davidson AD, Gow NA, Maiden MC, Odds FC. Candida orthopsilosis and Candida metapsilosis spp. nov. to replace Candida parapsilosis groups II and III. J Clin Microbiol. 2005;43:284–292. doi: 10.1128/JCM.43.1.284-292.2005. PubMed DOI PMC
Kosa P, Valach M, Tomaska L, Wolfe KH, Nosek J. Complete DNA sequences of the mitochondrial genomes of the pathogenic yeasts Candida orthopsilosis and Candida metapsilosis: insight into the evolution of linear DNA genomes from mitochondrial telomere mutants. Nucleic Acids Res. 2006;34:2472–2481. doi: 10.1093/nar/gkl327. PubMed DOI PMC
Penner GA, Bush A, Wise R, Kim W, Domier L, Kasha K, Laroche A, Scoles G, Molnar SJ, Fedak G. Reproducibility of random amplified polymorphic DNA (RAPD) analysis among laboratories. PCR Methods Appl. 1993;2:341–345. PubMed
Meunier JR, Grimont PA. Factors affecting reproducibility of random amplified polymorphic DNA fingerprinting. Res Microbiol. 1993;144:373–379. doi: 10.1016/0923-2508(93)90194-7. PubMed DOI
Tyler KD, Wang G, Tyler SD, Johnson WM. Factors affecting reliability and reproducibility of amplification-based DNA fingerprinting of representative bacterial pathogens. J Clin Microbiol. 1997;35:339–346. PubMed PMC
Khandka DK, Tuna M, Tal M, Nejidat A, Golan-Goldhirsh A. Variability in the pattern of random amplified polymorphic DNA. Electrophoresis. 1997;18:2852–2856. doi: 10.1002/elps.1150181522. PubMed DOI
Lehmann PF, Lin D, Lasker BA. Genotypic identification and characterization of species and strains within the genus Candida by using random amplified polymorphic DNA. J Clin Microbiol. 1992;30:3249–3254. PubMed PMC
Thanos M, Schonian G, Meyer W, Schweynoch C, Graser Y, Mitchell TG, Presber W, Tietz HJ. Rapid identification of Candida species by DNA fingerprinting with PCR. J Clin Microbiol. 1996;34:615–621. PubMed PMC
Liu D, Coloe S, Jones SL, Baird R, Pedersen J. Genetic speciation of Candida isolates by arbitrarily primed polymerase chain reaction. FEMS Microbiol Lett. 1996;145:23–26. doi: 10.1111/j.1574-6968.1996.tb08551.x. PubMed DOI
Meyer W, Latouche GN, Daniel HM, Thanos M, Mitchell TG, Yarrow D, Schonian G, Sorrell TC. Identification of pathogenic yeasts of the imperfect genus Candida by polymerase chain reaction fingerprinting. Electrophoresis. 1997;18:1548–1559. doi: 10.1002/elps.1150180911. PubMed DOI
Pinto PM, Resende MA, Koga-Ito CY, Tendler M. Genetic variability analysis among clinical Candida spp. isolates using random amplified polymorphic DNA. Mem Inst Oswaldo Cruz. 2004;99:147–152. PubMed
Rimek D, Garg AP, Haas WH, Kappe R. Identification of contaminating fungal DNA sequences in Zymolyase. J Clin Microbiol. 1999;37:830–831. PubMed PMC
Loeffler J, Hebart H, Bialek R, Hagmeyer L, Schmidt D, Serey FP, Hartmann M, Eucker J, Einsele H. Contaminations occurring in fungal PCR assays. J Clin Microbiol. 1999;37:1200–1202. PubMed PMC
McGinnis MR. Laboratory handbook of medical mycology. New York: Academic Press; 1980.
Fragner P. [Identification of yeasts isolated from human organism] Prague: Academia; 1992.
Felsenstein J. PHYLIP - Phylogeny Inference Package (Version 3.2) Cladistics. 1989;5:164–166.
PHYLIP. http://evolution.genetics.washington.edu/phylip.html
Choi JH, Jung HY, Kim HS, Cho HG. PhyloDraw: a phylogenetic tree drawing system. Bioinformatics. 2000;16:1056–1058. doi: 10.1093/bioinformatics/16.11.1056. PubMed DOI
PhyloDraw: A Phylogenetic Tree Drawing System. http://pearl.cs.pusan.ac.kr/phylodraw PubMed
Rapid identification of medically important Candida isolates using high resolution melting analysis