Heterotrophic carbon gain by the root hemiparasites, Rhinanthus minor and Euphrasia rostkoviana (Orobanchaceae)
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
- MeSH
- biomasa MeSH
- Euphrasia fyziologie MeSH
- fotosyntéza MeSH
- heterotrofní procesy fyziologie MeSH
- interakce hostitele a parazita MeSH
- izotopy uhlíku MeSH
- kořeny rostlin parazitologie MeSH
- kukuřice setá růst a vývoj parazitologie MeSH
- Orobanchaceae fyziologie MeSH
- Plantago růst a vývoj parazitologie MeSH
- pšenice růst a vývoj parazitologie MeSH
- uhlík metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- izotopy uhlíku MeSH
- uhlík MeSH
Hemiparasitic plants gain virtually all mineral nutrients and water from their host plant whilst organic carbon is provided, at least in part, by their own photosynthetic activity, although their rates of assimilation are substantially lower than that found in non-parasitic plants. Hence, hemiparasites must gain at least some of their organic carbon heterotrophically from the host plant. Despite this, heterotrophic carbon gain by root hemiparasites has been investigated only for a few genera. We investigated heterotrophic carbon gain by two root hemiparasites, Rhinanthus minor L. and Euphrasia rostkoviana Hayne (Orobanchaceae), using natural abundance stable isotope (delta(13)C) profiles of both parasites attached to C(3) (wheat) and C(4) (maize) hosts coupled to a linear two-source isotope-mixing model to estimate the percentage of carbon in the parasite that was derived from the host. Both R. minor and E. rostkoviana attached to maize hosts were significantly more enriched in (13)C than those attached to wheat hosts with R. minor becoming more enriched in (13)C than E. rostkoviana. The natural abundance (13)C profiles of both parasites were not significantly different from their wheat hosts, but were less enriched in (13)C than maize hosts. Using a linear two-source isotope-mixing model, we estimated that R. minor and E. rostkoviana adult plants derive c. 50 and 25% of their carbon from their hosts, respectively. In light of these results, we hypothesise that repeatedly observed negative effect of competition for light on hemiparasites acts predominantly in early ontogenetic stages when parasites grow unattached or the abstraction of host nutrients is less effective.
Zobrazit více v PubMed
J Exp Bot. 2001 Oct;52(363):2043-9 PubMed
Ann Bot. 2006 Dec;98(6):1289-99 PubMed
New Phytol. 2007;174(2):412-419 PubMed
Plant Cell Environ. 2008 Mar;31(3):325-40 PubMed
Oecologia. 2001 Jan;126(1):10-20 PubMed
New Phytol. 2008;178(1):24-40 PubMed
Trends Ecol Evol. 1989 Sep;4(9):258-63 PubMed
Physiol Plant. 2008 Sep;134(1):13-21 PubMed
Plant Physiol. 1987 Dec;85(4):1143-5 PubMed
Ann Bot. 2008 Mar;101(4):573-8 PubMed
Oecologia. 1994 Dec;100(4):430-438 PubMed
J Exp Bot. 2003 Aug;54(389):1985-93 PubMed
J Exp Bot. 2008;59(4):917-25 PubMed
Oecologia. 1996 Feb;105(3):369-376 PubMed
Am J Bot. 2006 Jul;93(7):1039-51 PubMed
Oecologia. 1992 Jan;89(1):62-68 PubMed
Oecologia. 1990 Sep;84(2):244-248 PubMed
Water-stress physiology of Rhinanthus alectorolophus, a root-hemiparasitic plant
Interactions between hemiparasitic plants and their hosts: the importance of organic carbon transfer