Interactions between hemiparasitic plants and their hosts: the importance of organic carbon transfer

. 2010 Sep ; 5 (9) : 1072-6. [epub] 20100901

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid20729638

Hemiparasitic plants display a unique strategy of resource acquisition combining parasitism of other species and own photosynthetic activity. Despite the active photoassimilation and green habit, they acquire substantial amount of carbon from their hosts. The organic carbon transfer has a crucial influence on the nature of the interaction between hemiparasites and their hosts which can oscillate between parasitism and competition for light. In this minireview, we summarize methodical approaches and results of various studies dealing with carbon budget of hemiparasites and the ecological implications of carbon heterotrophy in hemiparasites.

Zobrazit více v PubMed

Irving LJ, Cameron DD. You are what you eat: interactions between root parasitic plants and their hosts. Adv Bot Res. 2009;50:87–138.

Watling JR, Press MC. Impacts of infection by parasitic angiosperms on host photosynthesis. Plant Biol. 2001;3:244–250.

Nickrent DL. Plantas parásitas en el mundo. In: López-Sáez JA, Catalán P, Sáez L, editors. Plantas parásitas de la Península Ibérica e Islas Baleares. Madrid: Mundi-Prensa Libros; 2002. pp. 7–27.

Dörr I. How Striga parasitizes its host: a TEM and SEM study. Ann Bot. 1997;79:463–472.

Hibberd JM, Jeschke WD. Solute flux into parasitic plants. J Exp Bot. 2001;52:2043–2049. PubMed

Cameron DD, Coats AM, Seel WE. Differential resistance among host and non-host species underlies the variable success of the hemi-parasitic plant Rhinanthus minor. Ann Bot. 2006;99:563. PubMed PMC

Press MC. Autotrophy and heterotrophy in root hemi-parasites. Trends Ecol Evol. 1989;4:258–263. PubMed

Press MC, Graves JD, Stewart GR. Transpiration and carbon acquisition in root hemiparsitic angiosperms. J Exp Bot. 1988;39:1009–1014.

Jiang F, Jeschke WD, Hartung W. Water flows in the parasitic association Rhinanthus minor-Hordeum vulgare. J Exp Bot. 2003;54:1985–1993. PubMed

Ehleringer JR, Marshall JD. Water relations. In: Press MC, Graves JD, editors. Parasitic plants. London: Chapman & Hall; 1995. pp. 125–140.

Tennakoon KU, Pate JS. Growth and partitioning of C and fixed N in the shrub legume Acacia littorea in the presence or absence of the root hemiparasite Olax phyllanthi. J Exp Bot. 1997;48:1047–1060.

Tennakoon KU, Cameron DD. The anatomy of Santalum album (Sandalwood) haustoria. Can J Bot. 2006;84:1608–1616.

Finneran BA, Calvin CL. Transfer cells and flange cells in sinkers of the mistletoe Phoradendron macrophyllum (Viscaceae), and their novel combination. Protoplasma. 2000;211:76–93.

Heide-Jørgensen HS. Parasitic flowering plants. Leiden: Brill; 2008.

Glatzel G. Mineral nutrition and water relations of hemiparasitic mistletoes: A question of partitioning. Experiments with Loranthus europaeus on Quercus petraea and Quercus robur. Oecologia. 1983;56:193–201. PubMed

Ulmann I, Lange OL, Ziegler H, Ehleringer J, Schulze ED, Cowan IR. Diurnal courses of leaf conductance and transpiration of mistletoes and their hosts in central Australia. Oecologia. 1985;67:577–587. PubMed

Ehleringer JR, Cook CS, Tieszen LL. Comparative water use and nitrogen relationships in a mistletoe and its host. Oecologia. 1986;68:279–284. PubMed

Strong GL, Bannister P, Burritt D. Are mistletoes shade plants? CO2 assimilation and chlorophyll fluorescence of temperate mistletoes and their hosts. Ann Bot. 2000;85:511–519.

Govier RN, Nelson MD, Pate JS. Hemiparasitic nutrition in Angiosperms I. The transfer of organic compounds from host to Odontites verna (Bell.) Dum. (Scrophulariaceae) New Phytol. 1967;66:285–297.

Hodgson JF. Aspects of the carbon nutrition of angiospermous parasites. University of Sheffield UK; 1973. PhD thesis.

Farquhar GD, O'Leary MH, Berry JA. On the relationship between carbon isotope discrimination and the intercellular carbon dioxide concentration in leaves. Aust J Pl Physiol. 1982;9:121–137.

Press MC, Shah N, Tuohy JM, Stewart GM. Carbon isotope ratios demonstrate carbon flux from C4 host to C3 parasite. Plant Physiology. 1987;85:1143–1145. PubMed PMC

Graves JD, Wylde A, Press MC, Stewart GR. Growth and carbon allocation in Pennisetum typhoides infected with the parasitic angiosperm Striga hermonthica. Plant Cell Environ. 1990;13:367–373.

Tennakoon KU, Pate JS. Heterotrophic gain of carbon from hosts by the xylem-tapping root hemiparasite Olax phyllanthi (Olacaceae) Oecologia. 1996;105:369–376. PubMed

Tešitel J, Plavcová L, Cameron DD. Heterotrophic carbon gain by the root hemiparasites, Rhinanthus minor and Euphrasia rostkoviana (Orobanchaceae) Planta. 2010;231:1137–1144. PubMed

Ducharme LA, Ehrelinger JR. Gas exchange, δ13C and heterotrophy for Castilleja linariifolia and Orthocarpus tolmiei, facultative root hemiparasites on Artemisia tridentata. Gr Bas Nat. 1996;56:333–340.

Marshall JD, Ehrelinger JR. Are xylem-tapping mistletoes partially heterotrophic? Oecologia. 1990;84:244–248. PubMed

Schulze ED, Lange Ol, Ziegler H, Gebauer G. Carbon and nitrogen isotope ratios of mistletoes growing on nitrogen and non-nitrogen fixing hosts and on CAM plants in the Namib Desert confirm partial heterotrophy. Oecologia. 1991;88:457–462. PubMed

Richter A, Popp M, Mensen R, Stewart GR, von Willert DJ. Heterotrophic carbon gain of the parasitic Angiosperm Tapinanthus oleifolius. Aust J Plant Physiol. 1995;22:537–544.

Wang L, Barney K, D'Odorico P, Macko SA. Carbon and nitrogen parasitism by a xylem-tappingmistletoe (Tapinanthus oleifolius) along the Kalahari transect: a stable isotope study. Afr J Ecol. 2008;46:540–546.

Bannister P, Strong GL. Carbon and nitrogen isotope ratios, nitrogen content and heterotrophy in New Zealand mistletoes. Oecologia. 2001;126:10–20. PubMed

Matthies D. Parasitic and competitive interactions between the hemiparasites Rhinanthus serotinus and Odontites rubra and their host Medicago sativa. J Ecol. 1995;83:245–251.

Keith AM, Cameron DD, Seel WE. Spatial interactions between the hemiparasitic angiosperm Rhinanthus minor and its host are species-specific. Func Ecol. 2004;18:435–442.

Cameron DD, Hwangbo JK, Keith AM, Geniez JM, Kraushaar D, Rowntree J, et al. Interactions between the hemiparasitic Angiosperm Rhinanthus minor and its hosts: from cell to the ecosystem. Folia Geobot. 2005;40:217–229.

Hejcman M, Klaudisová M, Schellberg J, Honsová D. The Rengen grassland experiment: Plant species composition after 64 years of fertilizer application. Agr Ecosyst Environ. 2007;122:259–266.

Seel WE, Parsons AN, Press MC. Do inorganic solutes limit growth of the facultative hemiparasite Rhinanthus minor L. in the absence of a host? New Phytol. 1993;124:283–289. PubMed

Lechowski Z. Gas exchange in leaves of the root hemiparasite Melampyrum arvense L. before and after attachment to the host plant. Biol Plantarum. 1996;38:85–93.

Phoenix GK, Press MC. Linking physiological traits to impacts on community structure and function: the role of root hemiparasitic Orobanchaceae (ex-Scrophulariaceae) J Ecol. 2005;93:7–78.

Cameron DD, Geniez JM, Seel WE, Irving LJ. Suppression of host photosynthesis by the parasitic plant Rhinanthus minor. Ann Bot. 2008;101:573–578. PubMed PMC

Shen H, Prider JN, Facelli JM, Watling JR. The influence of the hemiparasitic angiosperm Cassytha pubescens on photosynthesis of its host Cytisus scoparius. Func Pl Biol. 2010;37:14–21.

Jeschke WD, Baig A, Hilpert A. Sink-simulated photosynthesis, increased transpiration and increased demand-dependent stimulation of nitrate uptake: nitrogen and carbon relations in the parasitic association Cuscuta reflexa-Coleus blumei. J Exp Bot. 1997;48:915–925.

Hibberd JM, Quick WP, Scholes JD. Can source-sink relationship explain responses of tobacco to infection by the root holoparasitic angiosperm Orobanche minor? Plant Cell Environ. 1998;21:333–340.

Hibberd JM, Quick WP, Press MC, Scholes JD, Jeschke WD. Solute fluxes from tobacco to the parasitic angiosperm Orobanche cernua and the influence of infection on host carbon and nitrogen relations. Plant Cell Environ. 1999;22:937–947.

Press MC, Phoenix GK. Impacts of parasitic plants on natural communities. New Phytol. 2005;166:737–751. PubMed

Quested HM, Press MC, Callaghan TV. Litter of the hemiparasite Bartsia alpina enhances plant growth: evidence for a functional role in nutrient cycling. Oecologia. 2003;135:606–614. PubMed

Glatzel G, Geils BW. Mistletoe ecophysiology: hostparasite interactions. Botany. 2009;87:10–15.

Logan BA, Huhn ER, Tissue DT. Photosynthetic characteristics of eastern dwarf mistletoe (Arceuthobium pusillum Peck) and its effects on the needles of host white spruce (Picea glauca [Moench] Voss) Plant Biol. 2002;4:740–745.

Bickford CP, Kolb TE, Geils BW. Host physiological condition regulates parasitic plant performance: Arceuthobium vaginatum subsp. cryptopodum on Pinus ponderosa. Oecologia. 2005;146:179–189. PubMed

Shaw DC, Chen J, Freeman EA, Braun DM. Spatial and population characteristics of dwarf mistletoe infected trees in an old-growth Douglas-western hemlock forest. Can J For Res. 2005;35:990–1001.

Shaw DC, Weiss SB. Canopy light and the distribution of hemlock dwarf mistletoe (Arceuthobium tsugense [Rosendahl] Jones GN subsp. tsugense) aerial shoots in an old-growth Douglas-fir/western hemlock forest. Northwest Sci. 2000;74:306–315.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...