Hydathode trichomes actively secreting water from leaves play a key role in the physiology and evolution of root-parasitic rhinanthoid Orobanchaceae
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
25987711
PubMed Central
PMC4479752
DOI
10.1093/aob/mcv065
PII: mcv065
Knihovny.cz E-zdroje
- Klíčová slova
- Ecophysiology, Lathraea, Rhinanthus alectorolophus, Triticum aestivum, holoparasite, hydathode trichome, orobanche, parasitic plant, respiration, rhinanthoid Orobanchaceae, root hemiparasite, transpiration, water regime, water secretion, xylem,
- MeSH
- biologická evoluce * MeSH
- buněčné dýchání MeSH
- interakce hostitele a parazita fyziologie MeSH
- kořeny rostlin parazitologie MeSH
- lineární modely MeSH
- listy rostlin metabolismus MeSH
- Orobanchaceae fyziologie MeSH
- plyny metabolismus MeSH
- transpirace rostlin MeSH
- trichomy fyziologie MeSH
- voda metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- plyny MeSH
- voda MeSH
BACKGROUND AND AIMS: Root hemiparasites from the rhinanthoid clade of Orobanchaceae possess metabolically active glandular trichomes that have been suggested to function as hydathode trichomes actively secreting water, a process that may facilitate resource acquisition from the host plant's root xylem. However, no direct evidence relating the trichomes to water secretion exists, and carbon budgets associated with this energy-demanding process have not been determined. METHODS: Macro- and microscopic observations of the leaves of hemiparasitic Rhinanthus alectorolophus were conducted and night-time gas exchange was measured. Correlations were examined among the intensity of guttation, respiration and transpiration, and analysis of these correlations allowed the carbon budget of the trichome activity to be quantified. We examined the intensity of guttation, respiration and transpiration, correlations among which indicate active water secretion. KEY RESULTS: Guttation was observed on the leaves of 50 % of the young, non-flowering plants that were examined, and microscopic observations revealed water secretion from the glandular trichomes present on the abaxial leaf side. Night-time rates of respiration and transpiration and the presence of guttation drops were positively correlated, which is a clear indicator of hydathode trichome activity. Subsequent physiological measurements on older, flowering plants indicated neither intense guttation nor the presence of correlations, which suggests that the peak activity of hydathodes is in the juvenile stage. CONCLUSIONS: This study provides the first unequivocal evidence for the physiological role of the hydathode trichomes in active water secretion in the rhinanthoid Orobanchaceae. Depending on the concentration of organic elements calculated to be in the host xylem sap, the direct effect of water secretion on carbon balance ranges from close to neutral to positive. However, it is likely to be positive in the xylem-only feeding holoparasites of the genus Lathraea, which is closely related to Rhinanthus. Thus, water secretion by the hydathodes might be viewed as a physiological pre-adaptation in the evolution of holoparasitism in the rhinanthoid lineage of Orobanchaceae.
Zobrazit více v PubMed
Alvarez S, Marsh EL, Schroeder SG, Schachtman DP. 2008. Metabolomic and proteomic changes in the xylem sap of maize under drought. Plant, Cell and Environment 31: 325–340. PubMed
Bell T, Adams M. 2011. Attack on all fronts: functional relationships between aerial and root parasitic plants and their woody hosts and consequences for ecosystems. Tree Physiology 31: 3–15. PubMed
Bennett J, Mathews S. 2006. Phylogeny of the parasitic plant family Orobanchaceae inferred from phytochrome A. Americal Journal of Botany 93: 1039–1051. PubMed
ter Braak CJF, Šmilauer P. 2012. Canoco 5, Windows release (5.00) . [Software for canonical community ordination]. Microcomputer Power, Ithaca, NY.
Cameron DD, Seel WE. 2007. Functional anatomy of haustoria formed by Rhinanthus minor: linking evidence from histology and isotope tracing. New Phytologist 174: 412–419. PubMed
Cameron DD, Coats AM, Seel WE. 2006. Differential resistance among host and non-host species underlies the variable success of the hemi-parasitic plant Rhinanthus minor. Annals of Botany 98: 1289–1299. PubMed PMC
Canny M, McCully M. 1988. The xylem sap of maize roots: its collection, composition and formation. Australian Journal of Plant Physiology 15: 557–566.
Darwin C. 1880. General considerations on the movements and growth of seedling plants. In: The power of movements in plants . London: John Murray, 67–128.
Ehleringer J, Marshall J. 1995. Water relations. In: Press MC, Graves JD, eds. Parasitic plants. London: Chapman & Hall, 125–140.
Escher P, Eiblmeier M, Hetzger I, Rennenberg H. 2004. Seasonal and spatial variation of carbohydrates in mistletoes (Viscum album) and the xylem sap of its hosts (Populus × euamericana and Abies alba). Physiologia Plantarum 120: 212–219. PubMed
Fedorowicz MS. 1915. Die Drüsenformen der Rhinanthoidae-Rhinanthae. Bulletin International de l’Académie des Sciences de Cracovie, Classe de Sciences Mathématiques et Naturelles: 286–322.
Fibich P, Lepš J, Berec L. 2010. Modelling the population dynamics of root hemiparasitic plants along a productivity gradient. Folia Geobotanica 45: 425–442.
Frey-Wyssling A. 1941. Die Guttation als allgemeine Erscheinung. Bericht der Schweizerischen Botanischen Gesellschaft 51: 321–325.
Furukawa J, Abe Y, Mizuno H, et al. 2011. Seasonal fluctuation of organic and inorganic components in xylem sap of Populus nigra. Plant Root 5: 56–62.
Govier R, Nelson M, Pate J. 1967. Hemiparasitic nutrition in angiosperms I. The transfer of organic compounds from host to Odontites verna (Bell.) Dum. (Scrophulariaceae). New Phytologist 66: 285–297.
Govier R, Brown JGS, Pate JS. 1968. Hemiparasitic nutrition in angiosperms II. Root haustoria and leaf glands of Odontites verna (Bell.) Dum. and their relevance to the abstraction of solutes from the host. New Phytologist 67: 963–972.
Groom P. 1897. On the leaves of Lathraea squamaria and of some allied Scrophulariaceae. Annals of Botany 11: 385–398.
Heide-Jørgensen HS. 1980. The xeromorphic leaves of Hakea suaveolens R.Br. III. Ontogeny, structure and function of the T-shaped trichomes. Botanisk Tidsskrift 75: 181–196.
Heide-Jørgensen HS. 2008. Parasitic flowering plants. Leiden: Brill.
Heide-Jørgensen HS. 2013. Introduction: the parasitic syndrome in higher plants. In: Joel D, Gressel J, Musselman L, eds. Parasitic Orobanchaceae: parasitic mechanisms and control strategies . Berlin: Springer-Verlag, 1–14.
Heizmann U, Kreuzwieser J, Schnitzler J-P, Brüggemann N, Rennenberg H. 2001. Assimilate transport in the xylem sap of pedunculate oak (Quercus robur) saplings. Plant Biology 3: 132–138.
Hibberd JM, Jeschke WD. 2001. Solute flux into parasitic plants. Journal of Experimental Botany 52: 2043–2049. PubMed
Hodgson JF. 1973. Aspects of the carbon nutrition of angiospermous parasites. PhD thesis, University of Sheffield, Sheffield, UK.
Höhn K. 1950. Untersuchungen über hydathoden und function. Akademie der Wissenschaften und der Literatur, Abhandlungen der Mathematisch-Naturwissenschaftlichen Klasse 2: 9–42.
van Hulst R, Shipley B, Theriault A. 1987. Why is Rhinanthus minor (Scrophulariaceae) such a good invader? Canadian Journal of Botany 65: 2373–2379.
Irving LJ, Cameron DD. 2009. You are what you eat: interactions between root parasitic plants and their hosts. Advances in Botanical Research 50: 87–138.
Jiang F, Jeschke WD, Hartung W. 2003. Water flows in the parasitic association Rhinanthus minor/Hordeum vulgare. Journal of Experimental Botany 54: 1985–1993. PubMed
Jiang F, Jeschke WD, Hartung W, Cameron DD. 2010. Interactions between Rhinanthus minor and its hosts: a review of water, mineral nutrient and hormone flows and exchanges in the hemiparasitic association. Folia Geobotanica 45: 369–385.
Kaplan A, Inceoglu Ö. 2003. Leaf anatomy and morphology of 14 species belonging to the Turkish Rhinantheae (Scrophulariaceae) tribe. Israel Journal of Plant Sciences 51: 297–305.
Klaren CH, Janssen G. 1978. Physiological changes in the hemiparasite Rhinanthus serotinus before and after attachment. Physiologia Plantarum 42: 151–155.
Klepper B, Kaufmann MR. 1966. Removal of salt from xylem sap by leaves and stems of guttating plants. Plant Physiology 41: 1743–1747. PubMed PMC
Kubat R, Weber HC. 1987. Zur Biologie von Rhynchocorys elephas (L.) Griseb. (Scrophulariaceae). Beiträge zur Biologie der Pflanzen 62: 239–250.
Lechowski Z. 1996. Gas exchange in leaves of the root hemiparasite Melampyrum arvense L. before and after attachment to the host plant. Biologia Plantarum 38: 85–93.
Lepš J. 1999. Nutrient status, disturbance and competition: an experimental test of relationships in a wet meadow. Journal of Vegetation Science 10: 219–230.
Matthies D. 1995. Parasitic and competitive interactions between the hemiparasites Rhinanthus serotinus and Odontites rubra and their host Medicago sativa. Journal of Ecology 83: 245–251.
McNeal JR, Bennett JR, Wolfe AD, Mathews S. 2013. Phylogeny and origins of holoparasitism in Orobanchaceae. American Journal of Botany 100: 971–983. PubMed
Mudrák O, Lepš J. 2010. Interactions of the hemiparasitic species Rhinanthus minor with its host plant community at two nutrient levels. Folia Geobotanica 45: 407–424.
Naumann J, Salomo K, Der JP, et al. 2013. Single-copy nuclear genes place haustorial Hydnoraceae within Piperales and reveal a Cretaceous origin of multiple parasitic Angiosperm lineages. PLoS One 8: e79204. PubMed PMC
Nickrent DL, Duff RJ. 1996. Molecular studies of parasitic plants using ribosomal RNA. In: Moreno MT, Cubero JI, Berner D, Joel D, Musselman LJ, Parker C, eds. Advances in parasitic plant research . Cordoba, Spain: Junta de Andalucia, Dirección General de Investigación Agraria, 28–52.
Nickrent DL, Duff RJ, Colwell AE, et al. 1998. Molecular phylogenetic and evolutionary studies of parasitic plants. In: Soltis D, Soltis P, Doyle J, eds. Molecular systematics of plants II. DNA sequencing . Boston: Kluwer Academic Publishers, 211–241.
Phoenix GK, Press MC. 2004. Linking physiological traits to impacts on community structure and function: the role of root hemiparasitic Orobanchaceae (ex-Scrophulariaceae). Journal of Ecology 93: 67–78.
Press M. 1989. Autotrophy and heterotrophy in root hemiparasites. Trends in Ecology and Evolution 4: 258–263. PubMed
Press M, Graves J, Stewart G. 1988. Transpiration and carbon acquisition in root hemiparasitic angiosperms. Journal of Experimental Botany 39: 1009–1014.
R Core Team. 2013. R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing; URL http://www.R-project.org/.
Renaudin S. 1966. Sur les glandes de Lathraea clandestina L. Bulletin de la Société Botanique de France 113: 379–385.
Renaudin S, Garrigues R. 1967. Sur l’ultrastructure des glandes en bouclier de Lathraea clandestina L. et leur rôle physiologique. Comptes Rendus de’l Académie de Sciences, Paris 264: 1984–1987.
Scheunert A, Fleischmann A, Olano-Marín C, Bräuchler C, Heubl G. 2012. Phylogeny of tribe Rhinantheae (Orobanchaceae) with a focus on biogeography, cytology and re-examination of generic concepts. Taxon 61: 1269–1285.
Schill V, Hartung W, Orthen B, Weisenseel MH. 1996. The xylem sap of maple (Acer platanoides) trees—sap obtained by a novel method shows changes with season and height. Journal of Experimental Botany 47: 123–133.
Schnepf E. 1964. Über Zellwandstrukturen bei den Köpfchendrüsen der Schuppenblätter von Lathraea clandestina L. Planta 60: 473–482.
Seel WE, Jeschke WD. 1999. Simultaneous collection of xylem sap from Rhinanthus minor and the hosts Hordeum and Trifolium: hydraulic properties, xylem sap composition and effects of attachment. New Phytologist 143: 281–298.
Seel WE, Press MC. 1993. Influence of the host on three sub-Arctic annual facultative root hemiparasites. I. Growth, mineral accumulation and above-ground dry-matter partitioning. New Phytologist 125: 131–138. PubMed
Seel WE, Cooper RE, Press MC. 1993. Growth, gas exchange and water use efficiency of the facultative hemiparasite Rhinanthus minor associated with hosts differring in foliar nitrogen concentration. Physiologia Plantarum 89: 64–70.
Smith S, Stewart GR. 1990. Effect of potassium levels on the stomatal behavior of the hemi-parasite Striga hermonthica. Plant Physiology 94: 1472–1476. PubMed PMC
Stewart GR, Press MC. 1990. The physiology and biochemistry of parasitic angiosperms. Annual Review of Plant Physiology and Molecular Biology 41: 127–151.
Těšitel J, Tesařová M. 2013. Ultrastructure of hydathode trichomes of hemiparasitic Rhinanthus alectorolophus and Odontites vernus: how important is their role in physiology and evolution of parasitism in Orobanchaceae? Plant Biology 15: 119–125. PubMed
Těšitel J, Plavcová L, Cameron DD. 2010a. Heterotrophic carbon gain by the root hemiparasites, Rhinanthus minor and Euphrasia rostkoviana (Orobanchaceae). Planta 231: 1137–1144. PubMed
Těšitel J, Plavcová L, Cameron DD. 2010b. Interactions between hemiparasitic plants and their hosts: the importance of organic carbon transfer. Plant Signaling and Behavior 5: 1072–1076. PubMed PMC
Těšitel J, Říha P, Svobodová Š, Malinová T, Štech M. 2010c. Phylogeny, life history evolution and biogeography of the Rhinanthoid Orobanchaceae. Folia Geobotanica 45: 347–367.
Těšitel J, Lepš J, Vráblová M, Cameron DD. 2011. The role of heterotrophic carbon acquisition by the hemiparasitic plant Rhinanthus alectorolophus in seedling establishment in natural communities: a physiological perspective. New Phytologist 192: 188–199. PubMed
Těšitel J, Hejcman M, Lepš J, Cameron DD. 2013. How does elevated grassland productivity influence populations of root hemiparasites? Commentary on Borowicz and Armstrong (Oecologia 2012). Oecologia 172: 933–936. PubMed
Těšitel J, Těšitelová T, Fisher JP, Lepš J, Cameron DD. 2015. Integrating ecology and physiology of root-hemiparasitic interaction: interactive effects of abiotic resources shape the interplay between parasitism and autotrophy. New Phytologist 205: 350–360. PubMed
Weber HC. 1973. Zur Biologie von Tozzia alpina L. (Standort, Wirtspflanzen, Entwicklung und Parasitismus). Beiträge zur Biologie der Pflanzen 49: 237–249.
Wegner LH. 2014. Root pressure and beyond: energetically uphill water transport into xylem vessels? Journal of Experimental Botany 65: 381–393. PubMed
Westwood JH, Yoder JI, Timko MP, dePamphilis CW. 2010. The evolution of parasitism in plants. Trends in Plant Science 15: 227–235. PubMed
Zeuthen T, MacAulay N. 2012. Transport of water against its concentration gradient: fact or fiction? WIREs Membrane Transport and Signaling 1: 373–381.
Ziegler H. 1955. Lathraea, ein Blutungssaft-schmarotzer. Berichte der Deutschen Botanischen Gesellschaft 68: 311–318. PubMed