The role of heterotrophic carbon acquisition by the hemiparasitic plant Rhinanthus alectorolophus in seedling establishment in natural communities: a physiological perspective

. 2011 Oct ; 192 (1) : 188-199. [epub] 20110531

Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid21627666

• Heterotrophic acquisition of substantial amounts of organic carbon by hemiparasitic plants was clearly demonstrated by numerous studies. Many hemiparasites are, however, also limited by competition for light preventing the establishment of their populations on highly productive sites. • In a growth-chamber experiment, we investigated the effects of competition for light, simulated by shading, on growth and heterotrophic carbon acquisition by the hemiparasite Rhinanthus alectorolophus attached to C(3) and C(4) hosts using analyses of biomass production and stable isotopes of carbon. • Shading had a detrimental effect on biomass production and vertical growth of the hemiparasites shaded from when they were seedlings, while shading imposed later caused only a moderate decrease of biomass production and had no effect on the height. Moreover, shading increased the proportion of host-derived carbon in hemiparasite biomass (up to 50% in shaded seedlings). • These results demonstrate that host-derived carbon can play a crucial role in carbon budget of hemiparasites, especially if they grow in a productive environment with intense competition for light. The heterotrophic carbon acquisition can allow hemiparasite establishment in communities of moderate productivity, helping well-attached hemiparasites to escape from the critical seedling stage.

Zobrazit více v PubMed

Alvarez S, Marsh EL, Schroeder SG, Schachtman DP. 2008. Metabolomic and proteomic changes in the xylem sap of maize under drought. Plant, Cell & Environment 31: 325-340.

ter Borg SJ. 1985. Population biology and habitat relations of some hemiparasitic Scrophulariaceae. In: White J, ed. The populations structure of vegetation. Dordrecht, the Netherlands: Dr W Junk Publishers, 463-478.

Cameron DD, Coats AM, Seel WE. 2006. Differential resistance among host and non-host species underlies the variable success of the hemi-parasitic plant Rhinanthus minor. Annals of Botany 98: 1289-1299.

Cameron DD, Hwangbo JK, Keith AM, Geniez JM, Kraushaar D, Rowntree J, Seel WE. 2005. Interactions between the hemiparasitic angiosperm Rhinanthus minor and its hosts: from cell to the ecosystem. Folia Geobotanica 40: 217-229.

Cameron DD, White A, Antonovics J. 2009. Parasite-grass-forb interactions and rock-paper- scissor dynamics: Predicting the effects of the parasitic plant Rhinanthus minor on host plant communities. Journal of Ecology, 97: 1311-1319.

Crawley MJ. 2007. The R book. Chichester, UK: John Wiley & Sons.

Dörr I. 1997. How Striga parasitizes its host: a TEM and SEM study. Annals of Botany 79: 463-472.

Ehleringer JR, Marshall JD. 1995. Water relations. In: Press MC, Graves JD, eds. Parasitic plants. London, UK: Chapman & Hall, 125-140.

Fibich P, Lepš J, Berec L. 2010. Modelling the population dynamics of root hemiparasitic plants along a productivity gradient. Folia Geobotanica 45: 425-442.

Gebauer G, Meyer M. 2003. 15N and 13C natural abundance of autotrophic and mycoheterotrophic orchids provides insight into nitrogen and carbon gain from fungal association. New Phytologist 160: 209-223.

Gu L, Baldocchi D, Verma SB, Black TA, Vesala T, Falge EM, Dowty PR. 2002. Advantages of diffuse radiation for terrestrial ecosystem productivity. Journal of Geophysical Research D: Atmospheres 107: 4050, doi: 10.1029/2001JD001242.

Hautier Y, Hector A, Vojtech E, Purves D, Turnbull LA. 2010. Modeling the growth of parasitic plants. Journal of Ecology 98: 857-866.

Hautier Y, Niklaus PA, Hector A. 2009. Competition for light causes plant biodiversity loss after eutrophication. Science 324: 636-638.

Hejcman M, Schellberg J, Pavlů V. 2011. Competitive ability of Rhinanthus minor L. in relation to productivity in the Rengen Grassland Experiment. Plant, Soil & Environment 57: 45-51.

van Hulst R, Shipley B, Thériault A. 1987. Why is Rhinanthus minor (Scrophulariaceae) such a good invader? Canadian Journal of Botany 65: 2373-2379.

Hwangbo JK, Seel WE. 2002. Effects of light availability on attached Rhinanthus minor (L.), an angiospermatic root hemiparasite. Journal of Plant Biology 45: 102-106.

Irving LJ, Cameron DD. 2009. You are what you eat: interactions between root parasitic plants and their hosts. Advances in Botanical Research 50: 87-138.

Jiang F, Jeschke WD, Hartung W. 2003. Water flows in the parasitic association Rhinanthus minor/Hordeum vulgare. Journal of Experimental Botany 54: 1985-1993.

Jiang F, Jeschke WD, Hartung W. 2004. Solute flows from Hordeum vulgare to the hemiparasite Rhinanthus minor and the influence of infection on host and parasite nutrient relations. Functional Plant Biology 31: 633-643.

Jiang F, Jeschke WD, Hartung W, Cameron DD. 2008. Mobility of boron-polyol complexes in the hemiparasitic association between Rhinanthus minor and Hordeum vulgare: the effects of nitrogen nutrition. Physiologia Plantarum 134: 13-21.

Jiang F, Jeschke WD, Hartung W, Cameron DD. 2010. Interactions between Rhinanthus minor and its hosts: A review of water, mineral nutrient and hormone flows and exchanges in the hemiparasitic association. Folia Geobotanica 45: 369-385.

Joshi J, Matthies D, Schmid B. 2000. Root hemiparasites and plant diversity in experimental grassland communities. Journal of Ecology 88: 634-644.

Karlík P, Poschlod P. 2009. History or abiotic filter: Which is more important in determining the species composition of calcareous grasslands? Preslia 81: 321-340.

Keith AM, Cameron DD, Seel WE. 2004. Spatial interactions between the hemiparasitic angiosperm Rhinanthus minor and its host are species-specific. Functional Ecology 18: 435-442.

Kelly D. 1989. Demography of short-lived plants in chalk grassland. I. Life cycle variation in annuals and strict biennials. Journal of Ecology 77: 747-769.

Lambers H, Chapin FS, Pons TL. 2008. Plant physiological ecology. New York, NY, USA: Springer.

Leake JR. 1994. The biology of myco-heterotrophic (‘saprophytic’) plants. New Phytologist 127: 171-216.

Marshall JD, Ehleringer JR. 1990. Are xylem-tapping mistletoes partially heterotrophic? Oecologia 84: 244-248.

Matthies D. 1995. Parasitic and competitive interactions between the hemiparasites Rhinanthus serotinus and Odontites rubra and their host Medicago sativa. Journal of Ecology 83: 245-251.

Matthies D. 2003. Positive and negative interactions among individuals of a root hemiparasite. Plant Biology 5: 79-84.

Meusel H, Jäger E, Rauschert S, Weinert E. 1978. Vergleichende Chorologie der zentraleuropäischen Flora, Vol. 2. Jena, Germany: VEB Gustav Fischer Verlag.

Mudrák O, Lepš J. 2010. Interactions of the hemiparasitic species Rhinanthus minor with its host plant community at two nutrient levels. Folia Geobotanica 45: 407-424.

Phoenix GK, Press MC. 2005. Linking physiological traits to impacts on community structure and function: the role of root hemiparasitic Orobanchaceae (ex-Scrophulariaceae). Journal of Ecology 93: 67-78.

Pinheiro J, Bates D, DebRoy S, Sarkar D, R Development Core Team. 2010. nlme: Linear and nonlinear mixed effects models. R package, version 3.1-97.

Press MC, Graves JD, Stewart GR. 1988. Transpiration and carbon acquisition in root hemiparasitic Angiosperms. Journal of Experimental Botany 39: 1009-1014.

Press MC, Phoenix GK. 2005. Impacts of parasitic plants on natural communities. New Phytologist 166: 737-751.

Press MC, Shah N, Tuohy JM, Stewart GR. 1987. Carbon isotope ratios demonstrate carbon flux from C4 host to C3 parasite. Plant Physiology 85: 1143-1145.

Press MC, Smith S, Stewart GR. 1991. Carbon acquisition and assimilation in parasitic plants. Functional ecology 5: 278-283.

Quested HM, Cornelissen JHC, Press MC, Callaghan TV, Aerts R, Trosien F, Riemann P, Gwyn-Jones D, Kondratchuk A, Jonasson SE. 2003. Decomposition of subarctic plants with differing nitrogen economies: a functional role for hemiparasites. Ecology 84: 3209-3221.

R Development Core Team. 2010. R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing, [WWW document]. URL http://www.R-project.org/ [accessed 20 October 2010].

Rogers WE, Nelson RR. 1962. Penetration and nutrition of Striga asiatica. Phytopathology 52: 1064-1070.

Santos-Izquierdo B, Pageau K, Fer A, Simier P, Robins RJ. 2008. Targeted distribution of photo-assimilate in Striga hermonthica (Del.) benth parasitic on Sorghum bicolor L. Phytochemistry Letters 1: 76-80.

Selosse M-A, Cameron DD. 2010. Introduction to a virtual special issue on mycoheterotrophy: New Phytologist sheds light on non-green plants. New Phytologist 185: 591-593.

Sinclair TR, Shiraiwa T. 1992. Soybean radiation-use efficiency as influenced by non-uniform specific leaf nitrogen distribution and diffuse radiation. Crop Science 33: 808-812.

Skála Z, Štech M. 2000. Rhinanthus L. In: Slavík B, ed. Květena České republiky [Flora of the Czech Republic], vol. 6 . Praha, Czech Republic: Academia, 462-471.

Smith BN, Epstein S. 1971. Two categories of 13C/12C ratios in higher plants. Plant Physiology 47: 380-384.

Strykstra RJ, Bekker RM, van Andel J. 2002. Dispersal and life span spectra in plant communities: a key to safe site dynamics, species coexistence and conservation. Ecography 25: 145-160.

Tennakoon KU, Pate JS. 1996. Heterotrophic gain of carbon from hosts by the xylem-tapping root hemiparasite Olax phyllanthi (Olacaceae). Oecologia 105: 369-376.

Těšitel J, Plavcová L, Cameron DD. 2010a. Heterotrophic carbon gain by the root hemiparasites, Rhinanthus minor and Euphrasia rostkoviana (Orobanchaceae). Planta 231: 1137-1144.

Těšitel J, Plavcová L, Cameron DD. 2010b. Interactions between hemiparasitic plants and their hosts: the importance of organic carbon transfer. Plant Signaling and Behavior 5: 1072-1076.

Těšitel J, Říha P, Svobodová Š, Malinová T, Štech M. 2010c. Phylogeny, life history evolution and biogeography of the Rhinanthoid Orobanchaceae. Folia Geobotanica 45: 347-367.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...