Cell proliferation of HaCaT keratinocytes on collagen films modified by argon plasma treatment
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
20428083
PubMed Central
PMC6257401
DOI
10.3390/molecules15042845
PII: 15042845
Knihovny.cz E-zdroje
- MeSH
- argon chemie MeSH
- buněčné kultury MeSH
- buněčné linie MeSH
- fotoelektronová spektroskopie MeSH
- keratinocyty cytologie fyziologie MeSH
- kolagen chemie MeSH
- lidé MeSH
- mikroskopie elektronová rastrovací MeSH
- proliferace buněk * MeSH
- regenerace * MeSH
- spektroskopie infračervená s Fourierovou transformací MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- argon MeSH
- atelocollagen MeSH Prohlížeč
- kolagen MeSH
Argon plasma treatment was used to modify the surface of atelocollagen films using a plasmochemical reactor. To evaluate the effects of the treatment, the untreated and treated samples were characterized by Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy (ATR-FTIR), Scanning Electron Microscopy (SEM) imaging, and X-ray Photoelectron Spectroscopy (XPS) techniques. Cell growth was carried out by culturing human immortalized keratinocyte (HaCaT) cells and proliferation was measured via MTT assay. It was observed that argon plasma treatment significantly enhanced the extent of cell proliferation, which was ascribed to the favourable role of plasma treatment in inducing surface oxygen-containing entities together with increasing surface roughness. This can be considered as a potentially promising approach for tissue regeneration purposes.
Zobrazit více v PubMed
Prockopk D.J., Kivirikko K.I. Collagens: Molecular biology, diseases, and potentials for therapy. Annu. Rev. Biochem. 1995;64:403–434. doi: 10.1146/annurev.bi.64.070195.002155. PubMed DOI
Ji Y., Li X.-T., Chen G.-Q. Interactions between a poly(3-hydroxybutyrate-co-3-hydroxyvalerate-co-3-hydroxyhexanoate) terpolyester and human keratinocytes. Biomaterials. 2008;29:3807–3814. doi: 10.1016/j.biomaterials.2008.06.008. PubMed DOI
Lehmann B. HaCaT cell line as a model system for vitamin D3 metabolism in human skin. J. Invest. Dermatol. 1997;108:78–82. PubMed
Boelsma E., Verhoeven M.C., Ponec M. Reconstruction of a human skin equivalent using a spontaneously transformed keratinocyte cell line (HaCaT) J. Invest. Dermatol. 1999;112:489–498. doi: 10.1046/j.1523-1747.1999.00545.x. PubMed DOI
Maas-Szabowski M., Stärker A., Fusenig N.E. Epidermal tissue regeneration and stromal interaction in HaCaT cells is initiated by TGF-α. J. Cell Sci. 2003;116:2937–2948. PubMed
Meineke V., Müller K., Ridi R., Cordes N., Köhn F.M., Mayerhofer A., Ring J., Van-Beuningen D. Development and evaluation of a skin organ model for the analysis of radiation effects. Strahlenthe Onkol. 2004;108:102–108. PubMed
Pattrick R.A.D. In: Noble Gases in Geochemistry and Cosmochemistry. Porcelli D., Ballentine C.J., Wieler R., editors. Geochemical Society and Mineralogical Society of America; Washington, DC, USA: 2002. p. 844.
Milinchuk V.K. Photoradiation chemistry of polymers. Nucl. Instrum. Methods Phys. Res. 1995;B105:24–29.
Prat R., Shi M.-K., Clouet F. Interactions of cold plasmas with polymers and their model molecules: Degradation vs. functionalzation. J. Macromol. Sci. A Pure Appl. Chem. 1997;34:471–488. doi: 10.1080/10601329708014974. DOI
Chu P.K., Chen J.V., Wang L.P., Huang N. Plasma-surface modifications of biomaterials. Mater. Sci. Eng. Res. 2002;R36:143–206.
Coen M.C., Dietler G., Kasas S., Groening P. AFM Measurements of the topography and the roughness of ECR plasma treated polypropylene. Appl. Surf. Sci. 1996;103:27–34. doi: 10.1016/0169-4332(96)00461-8. DOI
Coen M.C., Lehmann R., Groening P., Schlapbach L. Modification of the micro and nanotopography of several polymers by plasma treatments. Appl. Surf. Sci. 2003;207:276–286. doi: 10.1016/S0169-4332(02)01503-9. DOI
Ruddy A.C., McNally G.M., Nersisyan G., Graham W.G., Murphy W.R. The effect of atmospheric glow discharge (APGD) treatment on polyetherimide, polybutyleneterephthalate, and polyamides. J. Plast. Film Sheeting. 2006;22:103–119. doi: 10.1177/8756087906064223. DOI
Ru L., Jie-Rong C. Studies on wettability of medical poly(vinyl chloride) by remote argon plasma. Appl. Surf. Sci. 2006;252:5076–5082. doi: 10.1016/j.apsusc.2005.07.045. DOI
Morent R., De Geyter N., Leys C., Gengembre L., Payen E. Study of the ageing behavior of polymer films treated with a dielectric barrier discharge in air, helium and argon at medium pressure. Surf. Coat. Technol. 2007;201:7847–7854.s.
Kotál V., Stopka P., Sajdl P., Švorčík V. Thin surface layer of plasma treated polyethylene. Strength Mater. 2008;40:86–89. doi: 10.1007/s11223-008-0023-y. DOI
Olifirenko A.S., Novak I., Rozova E.Y., Saprykina N.N., Mitilineos A.G., Elyashevich G.K. Hydrophilization of porous polyethylene films by cold plasma of different types. Polym. Sci. Ser. B Polym. Chem. 2009;51:247–255. doi: 10.1134/S1560090409070070. DOI
Krishnarmurthy V., Kamel I.L. Argon plasma treatment of glass surfaces. J. Mater. Sci. 1989;24:3345–3352. doi: 10.1007/BF01139063. DOI
Nakahara M., Sanada Y. Effect of Plasma treatment on graphitic surface structure. Carbon. 1995;33:735–736. doi: 10.1016/0008-6223(95)93808-Y. DOI
Surdu-Bob C.C., Saied S.O., Sullivan J.L. An X-ray photoelectron spectroscopy study of the oxides of GaAs. Appl. Surf. Sci. 2001;183:126–136. doi: 10.1016/S0169-4332(01)00583-9. DOI
De Iorio I., Leone C., Nele L., Tagliaferri V. Plasma treatment of polymeric materials and Al alloys for adhesive bonding. J. Mater. Process. Technol. 1997;68:179–183. doi: 10.1016/S0924-0136(96)00025-8. DOI
Quast M., Stock H.-R., Mayr P. Plasma-assisted nitriding of aluminum-alloy parts. Met. Sci. Heat Treat. 2004;46:299–304. doi: 10.1023/B:MSAT.0000048838.41089.7e. DOI
Tsafack M.J., Levalois-Grutzmacher J. Flame retardancy of cotton textiles by plasma-induced graft-polymerization (PIGP) Surf. Coat. Technol. 2006;201:2599–2610.
Wei Q., Wang Y., Yang Q., Yu L. Functionalization of textile materials by plasma enhanced modification. J. Ind. Text. 2007;36:301–309. doi: 10.1177/1528083707072375. DOI
Karahan H.A., Özdogan E. Improvements of surface functionality of cotton fibers by atmospheric plasma treatment. Fibers Polym. 2008;9:21–26. doi: 10.1007/s12221-008-0004-6. DOI
Chen C.-C., Chen J.-C., Yao W.-H. Argon-plasma treatment for improving the physical properties of crosslinked cotton fabrics with dimethyloldihydroxyethyleneurea-acrylic acid. Text. Res. J. 2009 doi: 10.1177/0040517509346438. DOI
Stanford C.M., Keller J.C., Solursh M. Bone cell expression on titanium surfaces is altered by sterilization treatments. J. Dent. Res. 1994;73:1061–1071. PubMed
Ayhan F., Ayhan H., Piskin E. Sterilization of sutures by low temperature argon plasma. J. Bioact. Compat. Polym. 1998;13:65–72.
Baxter H.C., Campbell G.A., Richardson P.R., Jones A.C., Whittle I.R., Casey M., Whittaker A.G., Baxter R.L. Surgical instrument decontamination: Efficacy of introducing argon: Oxygen RF gas-plasmacleaning step as part of the cleaning cycle for stainless steel. IEEE Trans. Plasma Sci. 2006;34:1337–1344.
Everaert E.P.J.M., van de Belt-Gritter B., van Der Mei H.C., Busscher H.J., Verkerke G.J., Dijk J., Mahieu F. H. F., Reitsma A. In vitro and in vivo microbial adhesion and growth on argon plasma-treated silicone rubber voice prostheses. J. Mater. Sci. Mater. Med. 1998;9:147–157. PubMed
Rafat M., Griffith M., Hakim M., Muzakare L., Li F., Khulbe K.C., Matsuura T. Plasma surface modification and characterization of collagen-based artificial cornea for enhanced epithelialisation. J. Appl. Polym. Sci. 2007;106:2056–2064.
Lim H.R., Bael H.S., Lee M.H., Woo Y.I., Han D.-W., Han M.H., Baik H.K., Choi W.S., Park K.D., Chung K.-H., Park J.-C. Surface modification for enhancing behaviors of vascular endothelial cells onto polyurethane films by microwave-induced argon plasma. Surf. Coat. Technol. 2008;202:5768–5772.
Baek H.S., Park Y.H., Ki C.S., Park J.-C., Rah D.K. Enhanced chondrogenic responses of articular chondrocytes onto porous silk fibroin scaffolds treated with microwave-induced argon plasma. Surf. Coat. Technol. 2008;202:5794–5797. doi: 10.1016/j.surfcoat.2008.06.154. DOI
Desmet T., Morent R., De Geyter N., Leys C., Schacht E., Dubruel P. Nonthermal plasma technology as a versatile strategy for polymeric biomaterials surface modification: A review. Biomacromolecules. 2009;10:2351–2378. PubMed
Hauser J., Zietlow J., Köller M., Esenwein S.A., Halfmann H., Awakowicz P., Steinau H.U. Enhanced cell adhesion to silicone implant material through plasma surface modification. J. Mater. Sci. Mater. Med. 2009;20:2541–2548. PubMed
Sullivan J.L., Yu W., Saied S.O. A study of the compositional changes in chemically etched, Ar ion bombarded and reactive ion etched GaAs(100) surfaces by means of ARXPS and LEISS. Appl. Surf. Sci. 1995;90:309–319. doi: 10.1016/0169-4332(95)00169-7. DOI
Surdu-Bob C.C., Sullivan J.L., Saied S.O., Layberry R., Aflori M. Surface compositional changes in GaAs subjected to argon plasma treatment. Appl. Surf. Sci. 2002;202:183–198. doi: 10.1016/S0169-4332(02)00922-4. DOI
Pascu M., Vasile C., Gheorghiu M. Modification of polymer blend properties by argon/electron bean treatment: Surface properties. Mater. Chem. Phys. 2003;80:548–554. doi: 10.1016/S0254-0584(03)00092-0. DOI
Ye R., Kagohashi T., Zheng W. Investigation of surface treatment of conductive wire in cylindrical atmospheric pressure plasmas. Thin Solid Films. 2009;518:971–975. doi: 10.1016/j.tsf.2009.07.168. DOI
Zubavichus Y., Shaporenko A., Grunze M., Zharnikow M. Is X-ray absorption spectroscopy sensitive to the amino acid composition of functional proteins? J. Phys. Chem. B. 2008;112:4478–4480. PubMed
Wolf K.L., Sobral P.J.A., Telis V.R.N. Physicochemical characterization of collagen fibers and collagen powder for self-composite film production. Food Hydrocolloids. 2009;23:1886–1894.
Kong J., Yu S. Fourier transform infrared spectroscopic analysis of protein secondary structures. Acta Biochim. Biophys. Sin. 2007;39:549–599. doi: 10.1111/j.1745-7270.2007.00320.x. PubMed DOI
Pelin I.M., Maier S.S., Chitanu G.C., Bulacovschi V. Preparation and characterization of a hydroxyapatite-collagen composite as component for injectable bone substitute. Mater. Sci. Eng., C. 2009;29:2188–2194.
Almazán-Almazán M.C., Paredes J.I., Pérez-Mendoza M., Domingo-García M., López-Garzón F.J., Martínez-Alonso A., Tascón J.M.D. Surface characterisation of plasma-modified poly(ethylene terephthalate) J. Colloid Interface Sci. 2006;293:353–363. PubMed
Shi L.-S., Wang L.-Y., Wang Y.-N. The investigation of argon plasma surface modification to polyethylene: Quantitative ATR-FTIR spectroscopic analysis. Eur. Polym. J. 2006;42:1625–1633.
Schumacher M., Mizuno K., Bächinger H.P. The crystal structure of the collagen-like polypeptide (glycyl-4(R)-hydroxyprolyl-4(R)-hydroxyprolyl)9 at 1.55 Å resolution shows up-puckering of the proline ring in the Xaa position. J. Biol. Chem. 2005;280:20397–20403. PubMed
Okuyama K., Xu X., Iguchi M., Noguchi K. Revision of collagen molecular structure. Biopolymers. 2005;84:181–191. PubMed
France R.M., Short R.D. Effects of energy transfer from an argon plasma on the surface chemistry of poly(styrene), low density poly(ethylene), poly(propylene) and poly(ethylene terephthalate) J. Chem. Soc.,Faraday Trans. 1997;93:3173–3178. doi: 10.1039/a702311a. DOI
Ishaug-Riley S.L., Okun L.E., Prado G., Applegate M.A., Ratcliffe A. Human articular chondrocyte adhesion and proliferation on synthetic biodegradable polymer films. Biomaterials. 1999;20:2245–2256. doi: 10.1016/S0142-9612(99)00155-6. PubMed DOI
Hu S.-G., Jou C.-H., Yang M.C. Protein adsorption, fibroblast activity and antibacterial properties of poly(3-hydroxybutyric acid-co-3-hydroxyvaleric acid) grafted with chitosan and chitooligosaccharide after immobilized with hyaluronic acid. Biomaterials. 2003;24:2685–2693. doi: 10.1016/S0142-9612(03)00079-6. PubMed DOI
Lehocký M., Amaral P.F.F., Coelho M.A.Z., St’ahel P., Barros-Timmons A.M., Coutinho J.A.P. Attachment/detachment of Saccharomyces cerevisiae on plasma deposited organosilicon thin films. Czech. J. Phys. 2006;56:B1256–B1262.
Peschel G., Dahse H.-M., Konrad A., Dieter-Wieland G., Mueller P.-J., Martin D.P., Roth M. Growth of keratinocytes on porous films of poly(3-hydroxybutyrate) and poly(4-hydroxybutyrate) blended with hyaluronic acid and chitosan. J. Biomed. Mater. Res. Part A. 2007;85A:1072–1081. PubMed
Lehocký M., St’ahel P., Koutný M., Čech J., Institoris J., Mráček A. Adhesion of Rhodococcus sp S3E2 and Rhodococcus sp S3E3 to plasma prepared teflon-like and organosilicon surfaces. J. Mater. Process. Technol. 2009;209:2871–2875. doi: 10.1016/j.jmatprotec.2008.06.042. DOI
Paleos C.M., Tsiourvas D., Sideratou Z. Hydrogen bonding interactions of liposomes simulating cell-cell recognition. A review. Origins Life Evol. Biosphere. 2004;34:195–213. doi: 10.1023/B:ORIG.0000009840.53758.c2. PubMed DOI
Boukamp P., Petrussevska R.T., Breitkreutz D., Hornung J., Markham A. Normal keratinization in a spontaneously immortalized aneuploid keratinocyte cell line. J. Cell Biol. 1988;106:761–771. doi: 10.1083/jcb.106.3.761. PubMed DOI PMC
Mosmann T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Meth. 1983;65:55–63. doi: 10.1016/0022-1759(83)90303-4. PubMed DOI