Genomic characterization of large rearrangements of the LDLR gene in Czech patients with familial hypercholesterolemia

. 2010 Jul 27 ; 11 () : 115. [epub] 20100727

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid20663204

BACKGROUND: Mutations in the LDLR gene are the most frequent cause of Familial hypercholesterolemia, an autosomal dominant disease characterised by elevated concentrations of LDL in blood plasma. In many populations, large genomic rearrangements account for approximately 10% of mutations in the LDLR gene. METHODS: DNA diagnostics of large genomic rearrangements was based on Multiple Ligation dependent Probe Amplification (MLPA). Subsequent analyses of deletion and duplication breakpoints were performed using long-range PCR, PCR, and DNA sequencing. RESULTS: In set of 1441 unrelated FH patients, large genomic rearrangements were found in 37 probands. Eight different types of rearrangements were detected, from them 6 types were novel, not described so far. In all rearrangements, we characterized their exact extent and breakpoint sequences. CONCLUSIONS: Sequence analysis of deletion and duplication breakpoints indicates that intrachromatid non-allelic homologous recombination (NAHR) between Alu elements is involved in 6 events, while a non-homologous end joining (NHEJ) is implicated in 2 rearrangements. Our study thus describes for the first time NHEJ as a mechanism involved in genomic rearrangements in the LDLR gene.

Zobrazit více v PubMed

Goldstein JL, Hobbs HH, Brown MS. In: The Metabolic and Molecular Bases of Inherited Disease. Scriver CR, Baudet AL, Sly WS, Valle D, editor. New York: McGraw-Hill Medical Publishing Division; 2001. Familial hypercholesterolemia; pp. 2863–2910.

Neil A, Cooper J, Betteridge J, Capps N, McDowell I, Durrington P, Seed M, Humphries SE. Reductions in all-cause, cancer, and coronary mortality in statin-treated patients with heterozygous familial hypercholesterolaemia: a prospective registry study. Eur Heart J. 2008;29(21):2625–2633. doi: 10.1093/eurheartj/ehn422. PubMed DOI PMC

Versmissen J, Oosterveer DM, Yazdanpanah M, Defesche JC, Basart DC, Liem AH, Heeringa J, Witteman JC, Lansberg PJ, Kastelein JJ. Efficacy of statins in familial hypercholesterolaemia: a long term cohort study. BMJ. 2008;337:a2423. doi: 10.1136/bmj.a2423. PubMed DOI PMC

Civeira F. Guidelines for the diagnosis and management of heterozygous familial hypercholesterolemia. Atherosclerosis. 2004;173(1):55–68. doi: 10.1016/j.atherosclerosis.2003.11.010. PubMed DOI

Marks D, Thorogood M, Neil HA, Humphries SE. A review on the diagnosis, natural history, and treatment of familial hypercholesterolaemia. Atherosclerosis. 2003;168(1):1–14. doi: 10.1016/S0021-9150(02)00330-1. PubMed DOI

Hobbs HH, Russell DW, Brown MS, Goldstein JL. The LDL receptor locus in familial hypercholesterolemia: mutational analysis of a membrane protein. Annu Rev Genet. 1990;24:133–170. doi: 10.1146/annurev.ge.24.120190.001025. PubMed DOI

Leigh SE, Foster AH, Whittall RA, Hubbart CS, Humphries SE. Update and analysis of the University College London low density lipoprotein receptor familial hypercholesterolemia database. Ann Hum Genet. 2008;72(Pt 4):485–498. doi: 10.1111/j.1469-1809.2008.00436.x. PubMed DOI

Hobbs HH, Lehrman MA, Yamamoto T, Russell DW. Polymorphism and evolution of Alu sequences in the human low density lipoprotein receptor gene. Proc Natl Acad Sci USA. 1985;82(22):7651–7655. doi: 10.1073/pnas.82.22.7651. PubMed DOI PMC

Hobbs HH, Brown MS, Goldstein JL. Molecular genetics of the LDL receptor gene in familial hypercholesterolemia. Hum Mutat. 1992;1(6):445–466. doi: 10.1002/humu.1380010602. PubMed DOI

Amsellem S, Briffaut D, Carrie A, Rabes JP, Girardet JP, Fredenrich A, Moulin P, Krempf M, Reznik Y, Vialettes B. Intronic mutations outside of Alu-repeat-rich domains of the LDL receptor gene are a cause of familial hypercholesterolemia. Hum Genet. 2002;111(6):501–510. doi: 10.1007/s00439-002-0813-4. PubMed DOI

Deininger PL, Batzer MA. Alu repeats and human disease. Mol Genet Metab. 1999;67(3):183–193. doi: 10.1006/mgme.1999.2864. PubMed DOI

Fuhrman SA, Deininger PL, LaPorte P, Friedmann T, Geiduschek EP. Analysis of transcription of the human Alu family ubiquitous repeating element by eukaryotic RNA polymerase III. Nucleic Acids Res. 1981;9(23):6439–6456. doi: 10.1093/nar/9.23.6439. PubMed DOI PMC

Willis IM. RNA polymerase III. Genes, factors and transcriptional specificity. Eur J Biochem. 1993;212(1):1–11. doi: 10.1111/j.1432-1033.1993.tb17626.x. PubMed DOI

Weiner AM, Deininger PL, Efstratiadis A. Nonviral retroposons: genes, pseudogenes, and transposable elements generated by the reverse flow of genetic information. Annu Rev Biochem. 1986;55:631–661. doi: 10.1146/annurev.bi.55.070186.003215. PubMed DOI

Mighell AJ, Markham AF, Robinson PA. Alu sequences. FEBS Lett. 1997;417(1):1–5. doi: 10.1016/S0014-5793(97)01259-3. PubMed DOI

Shen MR, Batzer MA, Deininger PL. Evolution of the master Alu gene(s) J Mol Evol. 1991;33(4):311–320. doi: 10.1007/BF02102862. PubMed DOI

Batzer MA, Deininger PL, Hellmann-Blumberg U, Jurka J, Labuda D, Rubin CM, Schmid CW, Zietkiewicz E, Zuckerkandl E. Standardized nomenclature for Alu repeats. J Mol Evol. 1996;42(1):3–6. doi: 10.1007/BF00163204. PubMed DOI

Roy AM, Carroll ML, Kass DH, Nguyen SV, Salem AH, Batzer MA, Deininger PL. Recently integrated human Alu repeats: finding needles in the haystack. Genetica. 1999;107(1-3):149–161. doi: 10.1023/A:1003941704138. PubMed DOI

Roy AM, Carroll ML, Nguyen SV, Salem AH, Oldridge M, Wilkie AO, Batzer MA, Deininger PL. Potential gene conversion and source genes for recently integrated Alu elements. Genome Res. 2000;10(10):1485–1495. doi: 10.1101/gr.152300. PubMed DOI

Slagel V, Flemington E, Traina-Dorge V, Bradshaw H, Deininger P. Clustering and subfamily relationships of the Alu family in the human genome. Mol Biol Evol. 1987;4(1):19–29. PubMed

Shaw CJ, Lupski JR. Implications of human genome architecture for rearrangement-based disorders: the genomic basis of disease. Hum Mol Genet. 2004;13(Spec No 1):R57–64. doi: 10.1093/hmg/ddh073. PubMed DOI

de Smith AJ, Walters RG, Coin LJ, Steinfeld I, Yakhini Z, Sladek R, Froguel P, Blakemore AI. Small deletion variants have stable breakpoints commonly associated with alu elements. PLoS One. 2008;3(8):e3104. doi: 10.1371/journal.pone.0003104. PubMed DOI PMC

Linardopoulou EV, Williams EM, Fan Y, Friedman C, Young JM, Trask BJ. Human subtelomeres are hot spots of interchromosomal recombination and segmental duplication. Nature. 2005;437(7055):94–100. doi: 10.1038/nature04029. PubMed DOI PMC

Korbel JO, Urban AE, Affourtit JP, Godwin B, Grubert F, Simons JF, Kim PM, Palejev D, Carriero NJ, Du L. Paired-end mapping reveals extensive structural variation in the human genome. Science. 2007;318(5849):420–426. doi: 10.1126/science.1149504. PubMed DOI PMC

Perry GH, Ben-Dor A, Tsalenko A, Sampas N, Rodriguez-Revenga L, Tran CW, Scheffer A, Steinfeld I, Tsang P, Yamada NA. The fine-scale and complex architecture of human copy-number variation. Am J Hum Genet. 2008;82(3):685–695. doi: 10.1016/j.ajhg.2007.12.010. PubMed DOI PMC

Chan CY, Kiechle M, Manivasakam P, Schiestl RH. Ionizing radiation and restriction enzymes induce microhomology-mediated illegitimate recombination in Saccharomyces cerevisiae. Nucleic Acids Res. 2007;35(15):5051–5059. doi: 10.1093/nar/gkm442. PubMed DOI PMC

Lee K, Lee SE. Saccharomyces cerevisiae Sae2- and Tel1-dependent single-strand DNA formation at DNA break promotes microhomology-mediated end joining. Genetics. 2007;176(4):2003–2014. doi: 10.1534/genetics.107.076539. PubMed DOI PMC

Innerarity TL, Weisgraber KH, Arnold KS, Mahley RW, Krauss RM, Vega GL, Grundy SM. Familial defective apolipoprotein B-100: low density lipoproteins with abnormal receptor binding. Proc Natl Acad Sci USA. 1987;84(19):6919–6923. doi: 10.1073/pnas.84.19.6919. PubMed DOI PMC

Soria LF, Ludwig EH, Clarke HR, Vega GL, Grundy SM, McCarthy BJ. Association between a specific apolipoprotein B mutation and familial defective apolipoprotein B-100. Proc Natl Acad Sci USA. 1989;86(2):587–591. doi: 10.1073/pnas.86.2.587. PubMed DOI PMC

Civeira F, Ros E, Jarauta E, Plana N, Zambon D, Puzo J, Martinez de Esteban JP, Ferrando J, Zabala S, Almagro F. Comparison of genetic versus clinical diagnosis in familial hypercholesterolemia. Am J Cardiol. 2008;102(9):1187–1193. doi: 10.1016/j.amjcard.2008.06.056. 1193 e1181. PubMed DOI

Taylor A, Wang D, Patel K, Whittall R, Wood G, Farrer M, Neely RD, Fairgrieve S, Nair D, Barbir M. Mutation detection rate and spectrum in familial hypercholesterolaemia patients in the UK pilot cascade project. Clin Genet. 2009;77(6):572–80. doi: 10.1111/j.1399-0004.2009.01356.x. PubMed DOI

Garuti R, Lelli N, Barozzini M, Tiozzo R, Ghisellini M, Simone ML, Li Volti S, Garozzo R, Mollica F, Vergoni W. Two novel partial deletions of LDL-receptor gene in Italian patients with familial hypercholesterolemia (FH Siracusa and FH Reggio Emilia) Atherosclerosis. 1996;121(1):105–117. doi: 10.1016/0021-9150(95)05707-2. PubMed DOI

Chaves FJ, Real JT, Garcia-Garcia AB, Puig O, Ordovas JM, Ascaso JF, Carmena R, Armengod ME. Large rearrangements of the LDL receptor gene and lipid profile in a FH Spanish population. Eur J Clin Invest. 2001;31(4):309–317. doi: 10.1046/j.1365-2362.2001.00823.x. PubMed DOI

Fouchier SW, Kastelein JJ, Defesche JC. Update of the molecular basis of familial hypercholesterolemia in The Netherlands. Hum Mutat. 2005;26(6):550–556. doi: 10.1002/humu.20256. PubMed DOI

Chang JH, Pan JP, Tai DY, Huang AC, Li PH, Ho HL, Hsieh HL, Chou SC, Lin WL, Lo E. Identification and characterization of LDL receptor gene mutations in hyperlipidemic Chinese. J Lipid Res. 2003;44(10):1850–1858. doi: 10.1194/jlr.M200470-JLR200. PubMed DOI

Fouchier SW, Defesche JC, Umans-Eckenhausen MW, Kastelein JP. The molecular basis of familial hypercholesterolemia in The Netherlands. Hum Genet. 2001;109(6):602–615. doi: 10.1007/s00439-001-0628-8. PubMed DOI

Bertolini S, Garuti R, Lelli W, Rolleri M, Tiozzo RM, Ghisellini M, Simone ML, Masturzo P, Elicio NC, Stefanutti C. Four novel partial deletions of LDL-receptor gene in Italian patients with familial hypercholesterolemia. Arterioscler Thromb Vasc Biol. 1995;15(1):81–88. PubMed

Hobbs HH, Brown MS, Goldstein JL, Russell DW. Deletion of exon encoding cysteine-rich repeat of low density lipoprotein receptor alters its binding specificity in a subject with familial hypercholesterolemia. J Biol Chem. 1986;261(28):13114–13120. PubMed

Nissen PH, Damgaard D, Stenderup A, Nielsen GG, Larsen ML, Faergeman O. Genomic characterization of five deletions in the LDL receptor gene in Danish Familial Hypercholesterolemic subjects. BMC Med Genet. 2006;7:55. doi: 10.1186/1471-2350-7-55. PubMed DOI PMC

Holla OL, Teie C, Berge KE, Leren TP. Identification of deletions and duplications in the low density lipoprotein receptor gene by MLPA. Clin Chim Acta. 2005;356(1-2):164–171. doi: 10.1016/j.cccn.2005.01.028. PubMed DOI

Lehrman MA, Goldstein JL, Russell DW, Brown MS. Duplication of seven exons in LDL receptor gene caused by Alu-Alu recombination in a subject with familial hypercholesterolemia. Cell. 1987;48(5):827–835. doi: 10.1016/0092-8674(87)90079-1. PubMed DOI

Koeijvoets KC, Rodenburg J, Hutten BA, Wiegman A, Kastelein JJ, Sijbrands EJ. Low-density lipoprotein receptor genotype and response to pravastatin in children with familial hypercholesterolemia: substudy of an intima-media thickness trial. Circulation. 2005;112(20):3168–3173. doi: 10.1161/CIRCULATIONAHA.105.565507. PubMed DOI

Lelli N, Ghisellini M, Gualdi R, Tiozzo R, Calandra S, Gaddi A, Ciarrocchi A, Arca M, Fazio S, Coviello DA. Characterization of three mutations of the low density lipoprotein receptor gene in Italian patients with familial hypercholesterolemia. Arterioscler Thromb. 1991;11(2):234–243. PubMed

Gebow D, Miselis N, Liber HL. Homologous and nonhomologous recombination resulting in deletion: effects of p53 status, microhomology, and repetitive DNA length and orientation. Mol Cell Biol. 2000;20(11):4028–4035. doi: 10.1128/MCB.20.11.4028-4035.2000. PubMed DOI PMC

Costantini M, Bernardi G. Mapping insertions, deletions and SNPs on Venter's chromosomes. PLoS One. 2009;4(6):e5972. doi: 10.1371/journal.pone.0005972. PubMed DOI PMC

Kondo Y, Issa JP. Enrichment for histone H3 lysine 9 methylation at Alu repeats in human cells. J Biol Chem. 2003;278(30):27658–27662. doi: 10.1074/jbc.M304072200. PubMed DOI

Salih F, Salih B, Kogan S, Trifonov EN. Epigenetic nucleosomes: Alu sequences and CG as nucleosome positioning element. J Biomol Struct Dyn. 2008;26(1):9–16. PubMed

Schulz WA, Steinhoff C, Florl AR. Methylation of endogenous human retroelements in health and disease. Curr Top Microbiol Immunol. 2006;310:211–250. full_text. PubMed

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

LDLR gene rearrangements in Czech FH patients likely arise from one mutational event

. 2024 Feb 02 ; 23 (1) : 36. [epub] 20240202

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...