Xylanases of anaerobic fungus Anaeromyces mucronatus
Language English Country United States Media print-electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
- MeSH
- Anaerobiosis MeSH
- Cellobiose metabolism MeSH
- Cellulose metabolism MeSH
- Fungal Proteins biosynthesis MeSH
- Glycoside Hydrolases biosynthesis chemistry classification MeSH
- Culture Media chemistry MeSH
- Molecular Weight MeSH
- Neocallimastigales enzymology physiology MeSH
- Xylans metabolism MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Cellobiose MeSH
- Cellulose MeSH
- Fungal Proteins MeSH
- Glycoside Hydrolases MeSH
- Culture Media MeSH
- Xylans MeSH
The anaerobic fungus Anaeromyces mucronatus KF8 grown in batch culture on M10 medium with rumen fluid and microcrystalline cellulose as carbon source produced a broad range of enzymes requisite for degradation of plant structural and storage saccharides including cellulase, endoglucanase, xylanase, alpha-xylosidase, beta-xylosidase, alpha-glucosidase, beta-glucosidase, beta-galactosidase, mannosidase, cellobiohydrolase, amylase, laminarinase, pectinase and pectate lyase. These enzymes were detected in both the intra- and extracellular fractions, but production into the medium was prevalent with the exception of intracellular beta-xylosidase, chitinases, N-acetylglucosaminidase, and lipase. Xylanase activity was predominant among the polysaccharide hydrolases. Extracellular production of xylanase was stimulated by the presence of cellobiose and oat spelt xylan. Zymogram of xylanases of strain KF8 grown on different carbon sources revealed several isoforms of xylanases with approximate molar masses ranging from 26 to 130 kDa.
See more in PubMed
Can J Microbiol. 1993 Jan;39(1):40-5 PubMed
Gene. 2003 Sep 18;314:73-80 PubMed
Appl Environ Microbiol. 1981 Dec;42(6):1119-22 PubMed
Curr Microbiol. 2006 Nov;53(5):396-400 PubMed
Folia Microbiol (Praha). 2004;49(2):157-64 PubMed
J Biotechnol. 2003 Mar 20;101(3):253-65 PubMed
FEMS Microbiol Lett. 1990 Oct;60(1-2):11-6 PubMed
Appl Environ Microbiol. 1982 May;43(5):1026-33 PubMed
Anaerobe. 1995 Feb;1(1):41-7 PubMed
Appl Microbiol. 1966 Sep;14(5):794-801 PubMed
Biochem J. 1991 Sep 1;278 ( Pt 2):329-33 PubMed
Appl Microbiol Biotechnol. 2001 Aug;56(3-4):326-38 PubMed
World J Microbiol Biotechnol. 1995 Mar;11(2):242-3 PubMed
Arch Microbiol. 1991;156(4):290-6 PubMed
Appl Biochem Biotechnol. 2004 Spring;113-116:233-50 PubMed
Folia Microbiol (Praha). 2008;53(3):241-5 PubMed
Antonie Van Leeuwenhoek. 1993 Jan;63(1):63-76 PubMed
Nature. 1970 Aug 15;227(5259):680-5 PubMed
DNA Seq. 2002 Dec;13(6):313-20 PubMed
Microbiology (Reading). 2000 Feb;146 ( Pt 2):393-403 PubMed
Anal Biochem. 1976 May 7;72:248-54 PubMed
Anal Biochem. 1977 Jul;81(1):21-7 PubMed
Ann N Y Acad Sci. 2008 Mar;1125:267-79 PubMed
FEMS Microbiol Lett. 2005 Feb 15;243(2):455-60 PubMed
FEMS Microbiol Lett. 1990 Jul;58(2):177-82 PubMed
J Biosci Bioeng. 2001;91(2):153-8 PubMed
FEMS Microbiol Lett. 1998 Jul 1;164(1):47-53 PubMed
Appl Microbiol Biotechnol. 2005 Jun;67(5):577-91 PubMed
Folia Microbiol (Praha). 2006;51(4):273-7 PubMed
Patterns and determinants of the global herbivorous mycobiome