Transcription-dependent rearrangements of actin and nuclear myosin I in the nucleolus
Language English Country Germany Media print-electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
- MeSH
- Actins metabolism MeSH
- Cell Nucleolus metabolism MeSH
- Transcription, Genetic physiology MeSH
- HeLa Cells MeSH
- Immunohistochemistry MeSH
- Humans MeSH
- Myosin Type I metabolism MeSH
- DNA, Ribosomal metabolism MeSH
- RNA, Ribosomal metabolism MeSH
- RNA Polymerase I metabolism MeSH
- Pol1 Transcription Initiation Complex Proteins metabolism MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Actins MeSH
- Myosin Type I MeSH
- DNA, Ribosomal MeSH
- RNA, Ribosomal MeSH
- RNA Polymerase I MeSH
- transcription factor UBF MeSH Browser
- Pol1 Transcription Initiation Complex Proteins MeSH
Nuclear actin and nuclear myosin I (NMI) are important players in transcription of ribosomal genes. Transcription of rDNA takes place in highly organized intranuclear compartment, the nucleolus. In this study, we characterized the localization of these two proteins within the nucleolus of HeLa cells with high structural resolution by means of electron microscopy and gold-immunolabeling. We demonstrate that both actin and NMI are localized in specific compartments within the nucleolus, and the distribution of NMI is transcription-dependent. Moreover, a pool of NMI is present in the foci containing nascent rRNA transcripts. Actin, in turn, is present both in transcriptionally active and inactive regions of the nucleolus and colocalizes with RNA polymerase I and UBF. Our data support the involvement of actin and NMI in rDNA transcription and point out to other functions of these proteins in the nucleolus, such as rRNA maturation and maintenance of nucleolar architecture.
See more in PubMed
Histochem Cell Biol. 2000 Mar;113(3):181-7 PubMed
FASEB J. 2006 Sep;20(11):1901-3 PubMed
J Cell Physiol. 1970 Oct;76(2):127-39 PubMed
Nat Rev Mol Cell Biol. 2007 Jul;8(7):574-85 PubMed
J Biol Chem. 1997 Jul 4;272(27):17176-81 PubMed
J Cell Biol. 2002 May 27;157(5):739-41 PubMed
J Cell Sci. 1994 Feb;107 ( Pt 2):639-48 PubMed
J Cell Biol. 1989 Feb;108(2):243-53 PubMed
J Cell Sci. 1997 Sep;110 ( Pt 17):2053-63 PubMed
Histochem Cell Biol. 1998 Feb;109(2):111-8 PubMed
Histochem Cell Biol. 2009 Jun;131(6):743-53 PubMed
Exp Cell Res. 2004 Mar 10;294(1):140-8 PubMed
Histochem Cell Biol. 2001 Dec;116(6):495-505 PubMed
Anat Embryol (Berl). 1993 Dec;188(6):515-36 PubMed
EMBO Rep. 2006 May;7(5):525-30 PubMed
Histochem Cell Biol. 2005 Nov;124(5):347-58 PubMed
Chromosoma. 1997 Sep;106(4):216-25 PubMed
J Cell Sci. 1994 Aug;107 ( Pt 8):2191-202 PubMed
Exp Cell Res. 1995 Feb;216(2):285-9 PubMed
Histochem Cell Biol. 2006 Jan;125(1-2):127-37 PubMed
J Cell Biol. 1996 Apr;133(2):225-34 PubMed
Curr Opin Cell Biol. 1999 Jun;11(3):385-90 PubMed
Int Rev Cytol. 2002;219:199-266 PubMed
Nat Cell Biol. 2004 Dec;6(12):1165-72 PubMed
J Struct Biol. 2000 Dec;132(3):201-10 PubMed
Biochemistry. 1976 Apr 6;15(7):1500-9 PubMed
J Cell Biol. 2002 May 27;157(5):743-8 PubMed
J Cell Biol. 2009 Mar 23;184(6):771-6 PubMed
Histochem Cell Biol. 2008 Jan;129(1):13-31 PubMed
Trends Cell Biol. 2005 Apr;15(4):194-9 PubMed
Cytogenet Cell Genet. 2000;91(1-4):243-52 PubMed
Genes Dev. 2008 Feb 1;22(3):322-30 PubMed
FASEB J. 2010 Jan;24(1):146-57 PubMed
Chromosoma. 2009 Apr;118(2):193-207 PubMed
Mol Biol Cell. 2000 Jun;11(6):2175-89 PubMed