A thermodynamic model of bone remodelling: the influence of dynamic loading together with biochemical control
Jazyk angličtina Země Řecko Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
20811146
Knihovny.cz E-zdroje
- MeSH
- biologické modely * MeSH
- kostní denzita fyziologie MeSH
- lidé MeSH
- ligand RANK fyziologie MeSH
- mechanický stres MeSH
- osteogeneze fyziologie MeSH
- osteoklasty fyziologie MeSH
- osteoprotegerin fyziologie MeSH
- protein RANK fyziologie MeSH
- remodelace kosti fyziologie MeSH
- signální transdukce fyziologie MeSH
- termodynamika * MeSH
- zatížení muskuloskeletálního systému fyziologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- ligand RANK MeSH
- osteoprotegerin MeSH
- protein RANK MeSH
- TNFRSF11A protein, human MeSH Prohlížeč
- TNFSF11 protein, human MeSH Prohlížeč
Understanding of the bone remodelling process has considerably increased during the last 20 years. Since the ability to simulate (and predict) the effects of bone remodelling offers substantial insights, several models have been proposed to describe this phenomenon. The strength of the presented model is that it includes biochemical control factors (e.g., the necessity of cell-to-cell contact, which is mediated by the RANKL-RANK-OPG chain during osteoclastogenesis) and mechanical stimulation, the governing equations are derived from interaction kinetics (e.g., mass is preserved in running reactions), and the parameters are measurable. Behaviour of the model is in accordance with experimental and clinical observations, such as the role of dynamic loading, the inhibitory effect of dynamic loading on osteoclastogenesis, the observation that polykaryon osteoclasts are activated and formed by a direct cell-to-cell contact, and the correct concentrations of osteoblasts, osteoclasts, and osteocytes. The model does not yet describe the bone remodelling process in complete detail, but the implemented simplifications describe the key features and further details of control mechanisms may be added.
Biomechanical analysis of INFINITY rehabilitation method for treatment of low back pain
A coupled mechano-biochemical model for bone adaptation