Up-regulation and redistribution of protein kinase C-δ in chronically hypoxic heart
Jazyk angličtina Země Nizozemsko Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
- MeSH
- chronická nemoc MeSH
- fosforylace MeSH
- hypoxie enzymologie MeSH
- inhibitory proteinkinas farmakologie MeSH
- krysa rodu Rattus MeSH
- mitochondrie metabolismus MeSH
- myokard metabolismus patologie MeSH
- ochranné látky MeSH
- potkani Wistar MeSH
- proteinkinasa C-delta genetika metabolismus fyziologie MeSH
- sarkolema metabolismus MeSH
- tkáňová distribuce MeSH
- upregulace * MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- inhibitory proteinkinas MeSH
- ochranné látky MeSH
- proteinkinasa C-delta MeSH
The adaptation to chronic hypoxia confers long-lasting cardiac protection against acute ischemia-reperfusion injury. Protein kinase C (PKC) appears to play a role in the cardioprotective mechanism but the involvement of individual PKC isoforms remains unclear. The aim of this study was to examine the effects of chronic intermittent hypoxia (CIH; 7,000 m, 8 h/day) and acute administration of PKC-δ inhibitor (rottlerin, 0.3 mg/kg) on the expression and subcellular distribution of PKC-δ and PKC-ε in the left ventricular myocardium of adult male Wistar rats by Western blot and quantitative immunofluorescence microscopy. CIH decreased the total level of PKC-ε in homogenate without affecting the level of phosphorylated PKC-ε (Ser729). In contrast, CIH up-regulated the total level of PKC-δ as well as the level of phosphorylated PKC-δ (Ser643) in homogenate. Rottlerin partially reversed the hypoxia-induced increase in PKC-δ in the mitochondrial fraction. Immunofluorescent staining of ventricular cryo-sections revealed increased co-localization of PKC-δ with mitochondrial and sarcolemmal membranes in CIH hearts that was suppressed by rottlerin. The formation of nitrotyrosine as a marker of oxidative stress was enhanced in CIH myocardium, particularly in mitochondria. The expression of total oxidative phosphorylation complexes was slightly decreased by CIH mainly due to complex II decline. In conclusion, up-regulated PKC-δ in CIH hearts is mainly localized to mitochondrial and sarcolemmal membranes. The inhibitory effects of rottlerin on PKC-δ subcellular redistribution and cardioprotection (as shown previously) support the view that this isoform plays a role in the mechanism of CIH-induced ischemic tolerance.
Zobrazit více v PubMed
Biochem J. 2004 Dec 15;384(Pt 3):449-59 PubMed
Am J Physiol Heart Circ Physiol. 2007 Oct;293(4):H2219-30 PubMed
J Biol Chem. 1977 Dec 10;252(23):8731-9 PubMed
Pflugers Arch. 2003 Jun;446(3):356-64 PubMed
J Biol Chem. 2004 Nov 12;279(46):47985-91 PubMed
Physiol Res. 2004;53 Suppl 1:S3-13 PubMed
Circulation. 2002 Jul 9;106(2):239-45 PubMed
Cardiovasc Res. 2002 Aug 15;55(3):567-75 PubMed
Mol Cell Biochem. 2002 Mar;232(1-2):49-56 PubMed
Anesthesiology. 2005 Sep;103(3):540-7 PubMed
J Pharmacol Toxicol Methods. 2005 Mar-Apr;51(2):129-38 PubMed
Exp Biol Med (Maywood). 2007 Jun;232(6):823-32 PubMed
J Mol Cell Cardiol. 2005 Aug;39(2):203-11 PubMed
Circ Res. 2000 Sep 15;87(6):460-6 PubMed
J Mol Cell Cardiol. 2009 Feb;46(2):268-77 PubMed
Cardiovasc Res. 2005 Apr 1;66(1):132-40 PubMed
Am J Physiol Heart Circ Physiol. 2005 Apr;288(4):H1566-72 PubMed
Biochem J. 2006 Jan 1;393(Pt 1):191-9 PubMed
Am J Physiol Heart Circ Physiol. 2007 Jan;292(1):H224-30 PubMed
Anesthesiology. 2003 Jul;99(1):138-47 PubMed
J Biol Chem. 2003 Apr 18;278(16):14555-64 PubMed
Am J Physiol Heart Circ Physiol. 2009 Jun;296(6):H1741-7 PubMed
Physiol Bohemoslov. 1989;38(2):155-61 PubMed
Biochem Biophys Res Commun. 1994 Feb 28;199(1):93-8 PubMed
Life Sci. 2004 Oct 8;75(21):2587-603 PubMed
Acta Physiol (Oxf). 2010 Apr;198(4):431-40 PubMed
Mol Cell Biochem. 2008 Nov;318(1-2):175-81 PubMed
Circulation. 2003 Nov 11;108(19):2304-7 PubMed
Am J Physiol Heart Circ Physiol. 2004 May;286(5):H1712-9 PubMed
J Mol Cell Cardiol. 2001 May;33(5):1041-5 PubMed
Am J Physiol Heart Circ Physiol. 2004 Aug;287(2):H946-56 PubMed
Am J Physiol Heart Circ Physiol. 2010 Feb;298(2):H570-9 PubMed
Trends Pharmacol Sci. 2007 Sep;28(9):453-8 PubMed
Circulation. 2006 Jul 4;114(1 Suppl):I226-32 PubMed
Pharmacol Res. 2007 Jun;55(6):523-36 PubMed
J Mol Cell Cardiol. 2005 Oct;39(4):719-21 PubMed
Proc Natl Acad Sci U S A. 2001 Jun 5;98(12):6587-92 PubMed
Mol Cell Biochem. 2007 Mar;297(1-2):111-20 PubMed
Am J Physiol Heart Circ Physiol. 2004 Aug;287(2):H937-45 PubMed
Am J Physiol Heart Circ Physiol. 2002 Apr;282(4):H1395-403 PubMed
Am J Physiol Heart Circ Physiol. 2001 Mar;280(3):H1346-53 PubMed
Biochem J. 2007 Jul 15;405(2):331-40 PubMed
J Biol Chem. 2002 Apr 26;277(17):15021-7 PubMed
Life Sci. 2003 Jul 25;73(10):1275-87 PubMed
Physiol Rev. 2007 Jan;87(1):315-424 PubMed
J Biol Chem. 2008 Oct 31;283(44):29831-40 PubMed
J Biol Chem. 2007 Aug 10;282(32):23631-8 PubMed
Anesthesiology. 2004 Mar;100(3):506-14 PubMed
Circ Res. 2005 Jul 8;97(1):78-85 PubMed
Sixty Years of Heart Research in the Institute of Physiology of the Czech Academy of Sciences
The involvement of protein kinases in the cardioprotective effect of chronic hypoxia
Role of FAT/CD36 in novel PKC isoform activation in heart of spontaneously hypertensive rats