• This record comes from PubMed

Conserved residues within the putative S4-S5 region serve distinct functions among thermosensitive vanilloid transient receptor potential (TRPV) channels

. 2010 Dec 31 ; 285 (53) : 41455-62. [epub] 20101102

Language English Country United States Media print-electronic

Document type Journal Article, Research Support, Non-U.S. Gov't

Links

PubMed 21044960
PubMed Central PMC3009871
DOI 10.1074/jbc.m110.145466
PII: S0021-9258(19)76129-8
Knihovny.cz E-resources

The vanilloid transient receptor potential channel TRPV1 is a tetrameric six-transmembrane segment (S1-S6) channel that can be synergistically activated by various proalgesic agents such as capsaicin, protons, heat, or highly depolarizing voltages, and also by 2-aminoethoxydiphenyl borate (2-APB), a common activator of the related thermally gated vanilloid TRP channels TRPV1, TRPV2, and TRPV3. In these channels, the conserved charged residues in the intracellular S4-S5 region have been proposed to constitute part of a voltage sensor that acts in concert with other stimuli to regulate channel activation. The molecular basis of this gating event is poorly understood. We mutated charged residues all along the S4 and the S4-S5 linker of TRPV1 and identified four potential voltage-sensing residues (Arg(557), Glu(570), Asp(576), and Arg(579)) that, when specifically mutated, altered the functionality of the channel with respect to voltage, capsaicin, heat, 2-APB, and/or their interactions in different ways. The nonfunctional charge-reversing mutations R557E and R579E were partially rescued by the charge-swapping mutations R557E/E570R and D576R/R579E, indicating that electrostatic interactions contribute to allosteric coupling between the voltage-, temperature- and capsaicin-dependent activation mechanisms. The mutant K571E was normal in all aspects of TRPV1 activation except for 2-APB, revealing the specific role of Lys(571) in chemical sensitivity. Surprisingly, substitutions at homologous residues in TRPV2 or TRPV3 had no effect on temperature- and 2-APB-induced activity. Thus, the charged residues in S4 and the S4-S5 linker contribute to voltage sensing in TRPV1 and, despite their highly conserved nature, regulate the temperature and chemical gating in the various TRPV channels in different ways.

See more in PubMed

Caterina M. J., Schumacher M. A., Tominaga M., Rosen T. A., Levine J. D., Julius D. (1997) Nature 389, 816–824 PubMed

Voets T., Droogmans G., Wissenbach U., Janssens A., Flockerzi V., Nilius B. (2004) Nature 430, 748–754 PubMed

Tominaga M., Caterina M. J., Malmberg A. B., Rosen T. A., Gilbert H., Skinner K., Raumann B. E., Basbaum A. I., Julius D. (1998) Neuron 21, 531–543 PubMed

Matta J. A., Ahern G. P. (2007) J. Physiol. 585, 469–482 PubMed PMC

Brauchi S., Orio P., Latorre R. (2004) Proc. Natl. Acad. Sci. U.S.A. 101, 15494–15499 PubMed PMC

Latorre R., Zaelzer C., Brauchi S. (2009) Q. Rev. Biophys. 42, 201–246 PubMed

Bezanilla F. (2008) Nat. Rev. Mol. Cell Biol. 9, 323–332 PubMed

Villalba-Galea C. A., Sandtner W., Starace D. M., Bezanilla F. (2008) Proc. Natl. Acad. Sci. U.S.A. 105, 17600–17607 PubMed PMC

Long S. B., Campbell E. B., MacKinnon R. (2005) Science 309, 903–908 PubMed

Voets T., Owsianik G., Janssens A., Talavera K., Nilius B. (2007) Nat. Chem. Biol. 3, 174–182 PubMed

Nilius B., Talavera K., Owsianik G., Prenen J., Droogmans G., Voets T. (2005) J. Physiol. 567, 35–44 PubMed PMC

Susankova K., Ettrich R., Vyklicky L., Teisinger J., Vlachova V. (2007) J. Neurosci. 27, 7578–7585 PubMed PMC

Vlachová V., Teisinger J., Susánková K., Lyfenko A., Ettrich R., Vyklický L. (2003) J. Neurosci. 23, 1340–1350 PubMed PMC

Dittert I., Benedikt J., Vyklický L., Zimmermann K., Reeh P. W., Vlachová V. (2006) J. Neurosci. Methods 151, 178–185 PubMed

Brauchi S., Orta G., Mascayano C., Salazar M., Raddatz N., Urbina H., Rosenmann E., Gonzalez-Nilo F., Latorre R. (2007) Proc. Natl. Acad. Sci. U.S.A. 104, 10246–10251 PubMed PMC

Myers B. R., Bohlen C. J., Julius D. (2008) Neuron 58, 362–373 PubMed PMC

Xiao R., Tian J., Tang J., Zhu M. X. (2008) Cell Calcium 43, 334–343 PubMed PMC

Fernández-Ballester G., Ferrer-Montiel A. (2008) J. Membr. Biol. 223, 161–172 PubMed

Novakova-Tousova K., Vyklicky L., Susankova K., Benedikt J., Samad A., Teisinger J., Vlachova V. (2007) Neuroscience 149, 144–154 PubMed

Yao J., Qin F. (2009) PLoS Biol. 7, e46. PubMed PMC

Hu H. Z., Gu Q., Wang C., Colton C. K., Tang J., Kinoshita-Kawada M., Lee L. Y., Wood J. D., Zhu M. X. (2004) J. Biol. Chem. 279, 35741–35748 PubMed

Chung M. K., Lee H., Mizuno A., Suzuki M., Caterina M. J. (2004) J. Neurosci. 24, 5177–5182 PubMed PMC

Hu H., Grandl J., Bandell M., Petrus M., Patapoutian A. (2009) Proc. Natl. Acad. Sci. U.S.A. 106, 1626–1631 PubMed PMC

Neeper M. P., Liu Y., Hutchinson T. L., Wang Y., Flores C. M., Qin N. (2007) J. Biol. Chem. 282, 15894–15902 PubMed

Asakawa M., Yoshioka T., Matsutani T., Hikita I., Suzuki M., Oshima I., Tsukahara K., Arimura A., Horikawa T., Hirasawa T., Sakata T. (2006) J. Invest. Dermatol. 126, 2664–2672 PubMed

Jordt S. E., Julius D. (2002) Cell 108, 421–430 PubMed

Gavva N. R., Klionsky L., Qu Y., Shi L., Tamir R., Edenson S., Zhang T. J., Viswanadhan V. N., Toth A., Pearce L. V., Vanderah T. W., Porreca F., Blumberg P. M., Lile J., Sun Y., Wild K., Louis J. C., Treanor J. J. (2004) J. Biol. Chem. 279, 20283–20295 PubMed

Grandl J., Hu H., Bandell M., Bursulaya B., Schmidt M., Petrus M., Patapoutian A. (2008) Nat. Neurosci. 11, 1007–1013 PubMed PMC

Yang F., Cui Y., Wang K., Zheng J. (2010) Proc. Natl. Acad. Sci. U.S.A. 107, 7083–7088 PubMed PMC

Yao J., Liu B., Qin F. (2010) Biophys. J. 99, 1743–1753 PubMed PMC

Gallivan J. P., Dougherty D. A. (1999) Proc. Natl. Acad. Sci. U.S.A. 96, 9459–9464 PubMed PMC

Vriens J., Owsianik G., Janssens A., Voets T., Nilius B. (2007) J. Biol. Chem. 282, 12796–12803 PubMed

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...