Surface plasmon resonance biosensor for rapid label-free detection of microribonucleic acid at subfemtomole level
Language English Country United States Media print-electronic
Document type Evaluation Study, Journal Article, Research Support, N.I.H., Extramural, Research Support, Non-U.S. Gov't
Grant support
P50 GM076547
NIGMS NIH HHS - United States
P50 GM076547-03
NIGMS NIH HHS - United States
GM076547
NIGMS NIH HHS - United States
PubMed
21090631
PubMed Central
PMC3021551
DOI
10.1021/ac102131s
Knihovny.cz E-resources
- MeSH
- Biosensing Techniques methods MeSH
- DNA MeSH
- Nucleic Acid Hybridization immunology MeSH
- Liver chemistry MeSH
- Limit of Detection MeSH
- Methods MeSH
- MicroRNAs analysis MeSH
- Mice MeSH
- Surface Plasmon Resonance methods MeSH
- Antibodies MeSH
- RNA MeSH
- Animals MeSH
- Check Tag
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Evaluation Study MeSH
- Research Support, Non-U.S. Gov't MeSH
- Research Support, N.I.H., Extramural MeSH
- Names of Substances
- DNA MeSH
- MicroRNAs MeSH
- Antibodies MeSH
- RNA MeSH
Microribonucleic acids (miRNAs) have been linked with various regulatory functions and disorders, such as cancers and heart diseases. They, therefore, present an important target for detection technologies for future medical diagnostics. We report here a novel method for rapid and sensitive miRNA detection and quantitation using surface plasmon resonance (SPR) sensor technology and a DNA*RNA antibody-based assay. The approach takes advantage of a novel high-performance portable SPR sensor instrument for spectroscopy of surface plasmons based on a special diffraction grating called a surface plasmon coupler and disperser (SPRCD). The surface of the grating is functionalized with thiolated DNA oligonucleotides which specifically capture miRNA from a liquid sample without amplification. Subsequently, an antibody that recognizes DNA*RNA hybrids is introduced to bind to the DNA*RNA complex and enhance sensor response to the captured miRNA. This approach allows detection of miRNA in less than 30 min at concentrations down to 2 pM with an absolute amount at high attomoles. The methodology is evaluated for analysis of miRNA from mouse liver tissues and is found to yield results which agree well with those provided by the quantitative polymerase chain reaction (qPCR).
See more in PubMed
He L, Hannon GJ. Nat. Rev. Genet. 2004;5:522–531. PubMed
Ikeda S, Kong SW, Lu J, Bisping E, Zhang H, Allen PD, Golub TR, Pieske B, Pu WT. Physiol. Genomics. 2007;31:367–373. PubMed
Iorio MV, Ferracin M, Liu CG, Veronese A, Spizzo R, Sabbioni S, Magri E, Pedriali M, Fabbri M, Campiglio M, Menard S, Palazzo JP, Rosenberg A, Musiani P, Volinia S, Nenci I, Calin GA, Querzoli P, Negrini M, Croce CM. Cancer Res. 2005;65:7065–7070. PubMed
Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, Peck D, Sweet-Cordero A, Ebet BL, Mak RH, Ferrando AA, Downing JR, Jacks T, Horvitz HR, Golub TR. Nature. 2005;435:834–838. PubMed
Wang K, Zhang SL, Marzolf B, Troisch P, Brightman A, Hu ZY, Hood LE, Galas DJ. Proc. Natl. Acad. Sci. U. S. A. 2009;106:4402–4407. PubMed PMC
Lagos-Quintana M, Rauhut R, Yalcin A, Meyer J, Lendeckel W, Tuschl T. Curr. Biol. 2002;12:735–739. PubMed
Valoczi A, Hornyik C, Varga N, Burgyan J, Kauppinen S, Havelda Z. Nucleic Acids Res. 2004;32 PubMed PMC
Pall GS, Hamilton AJ. Nat. Protoc. 2008;3:1077–1084. PubMed
Benes V, Castoldi M. Methods. 2010;50:244–249. PubMed
Lee LW, Zhang S, Etheridge A, Ma L, Martin D, Galas D, Wang K. RNA. 16:2170–2180. PubMed PMC
Thomson JM, Parker J, Perou CM, Hammond SM. Nat. Methods. 2004;1:47–53. PubMed
Liu CG, Calin GA, Meloon B, Gamliel N, Sevignani C, Ferracin M, Dumitru CD, Shimizu M, Zupo S, Dono M, Alder H, Bullrich F, Negrini M, Croce CM. Proc. Natl. Acad. Sci. U. S. A PubMed PMC
Schetter AJ, Leung SY, Sohn JJ, Zanetti KA, Bowman ED, Yanaihara N, Yuen ST, Chan TL, Kwong DLW, Au GKH, Liu CG, Calin GA, Croce CM, Harris CC. JAMA, J. Am. Med. Assoc. 2008;299:425–436. PubMed PMC
Geiss GK, Bumgarner RE, Birditt B, Dahl T, Dowidar N, Dunaway DL, Fell HP, Ferree S, George RD, Grogan T, James JJ, Maysuria M, Mitton JD, Oliveri P, Osborn JL, Peng T, Ratcliffe AL, Webster PJ, Davidson EH, Hood L. Nat. Biotechnol. 2008;26:317–325. PubMed
Li N, Jablonowski C, Jin HL, Zhong WW. Anal. Chem. 2009;81:4906–4913. PubMed
Wark AW, Lee HJ, Corn RM. Angew. Chem. Int. Edit. 2008;47:644–652. PubMed PMC
Cosnier S, Mailley P. Analyst. 2008;133:984–991. PubMed
Homola J. Chem. Rev. 2008;108:462–493. PubMed
Piliarik M, Párová L, Homola J. Biosens. Bioelectron. 2009;24:1399–1404. PubMed
Špringer T, Piliarik M, Homola J. Sens. Actuators, B. 2010;145:588–591.
He L, Musick MD, Nicewarner SR, Salinas FG, Benkovic SJ, Natan MJ, Keating CD. J. Am. Chem. Soc. 2000;122:9071–9077.
Okumura A, Sato Y, Kyo M, Kawaguchi H. Anal. Biochem. 2005;339:328–337. PubMed
Fang SP, Lee HJ, Wark AW, Corn RM. J. Am. Chem. Soc. 2006;128:14044–14046. PubMed PMC
Hu ZL, Zhang AX, Storz G, Gottesman S, Leppla SH. Nucleic Acids Res. 2006;34 PubMed PMC
Piliarik M, Vala M, Tichý I, Homola J. Biosens. Bioelectron. 2009;24:3430–3435. PubMed
Peterson AW, Heaton RJ, Georgiadis RM. Nucleic Acids Res. 2001;29:5163–5168. PubMed PMC
Špringer T, Šípová H, Vaisocherová H, Štěpánek J, Homola J. Nucleic Acids Res. :gkq577. PubMed PMC
Pall GS, Codony-Servat C, Byrne J, Ritchie L, Hamilton A. Nucleic Acids Res. 2007;35 PubMed PMC