DNA and histone deacetylases as targets for neuroblastoma treatment
Status PubMed-not-MEDLINE Jazyk angličtina Země Slovensko Médium print
Typ dokumentu časopisecké články
PubMed
21217872
PubMed Central
PMC2984128
DOI
10.2478/v10102-010-0010-6
Knihovny.cz E-zdroje
- Klíčová slova
- DNA-damaging anticancer drugs, inhibitors of histone deacetylases, mechanisms of acticancer effects of drugs, neuroblastoma,
- Publikační typ
- časopisecké články MeSH
Neuroblastoma, a tumor of the peripheral sympathetic nervous system, is the most frequent solid extra cranial tumor in children and is a major cause of death from neoplasia in infancy. Still little improvement in therapeutic options has been made, requiring a need for the development of new therapies. In our laboratory, we address still unsettled questions, which of mechanisms of action of DNA-damaging drugs both currently use for treatment of human neuroblastomas (doxorubicin, cis-platin, cyclophosphamide and etoposide) and another anticancer agent decreasing growth of neuroblastomas in vitro, ellipticine, are predominant mechanism(s) responsible for their antitumor action in neuroblastoma cell lines in vitro. Because hypoxia frequently occurs in tumors and strongly correlates with advanced disease and poor outcome caused by chemoresistance, the effects of hypoxia on efficiencies and mechanisms of actions of these drugs in neuroblastomas are also investigated. Since the epigenetic structure of DNA and its lesions play a role in the origin of human neuroblastomas, pharmaceutical manipulation of the epigenome may offer other treatment options also for neuroblastomas. Therefore, the effects of histone deacetylase inhibitors on growth of neuroblastoma and combination of these compounds with doxorubicin, cis-platin, etoposide and ellipticine as well as mechanisms of such effects in human neuroblastona cell lines in vitro are also investigated. Such a study will increase our knowledge to explain the proper function of these drugs on the molecular level, which should be utilized for the development of new therapies for neuroblastomas.
Zobrazit více v PubMed
Auclair C. Multimodal action of antitumor agents on DNA: The ellipticine series. Arch Biochem Biophys. 1987;259:1–14. PubMed
Bader P, Schilling F, Schlaud M, Girgert R, Handgretinger R, Klingebiel T, Treuner J, Liu C, Niethammer D, Beck JF. Expression analysis of multidrug resistance associated genes in neuroblastomas. Onco. Rep. 1999;6:1143–1146. PubMed
Bates SE, Shieh CY, Tsokos M. Expression of mdr-1/P-glycoprotein in human neuroblastoma. Am J Pathol. 1991;139:305–315. PubMed PMC
Bedrnicek J, Vicha A, Jarosova M, Holzerova M, Cinatl J, Jr, Michaelis M, Cinatl J, Eckschlager T. Characterization of drug-resistant neuroblastoma cell lines by comparative genomic hybridization. Neoplasma. 2005;52:415–419. PubMed
Blaheta RA, Michaelis M, Natsheh I, Hasenberg C, Weich E, Relja B, Jonas D, Doerr HW, Cinatl J., Jr Valproic acid inhibits adhesion of vincristine- and cisplatin-resistant neuroblastoma tumour cells to endothelium. Br J Cancer. 2007;96:1699–706. PubMed PMC
Bolden JE, Peart MJ, Johnstone RW. Anticancer activities of histone deacetylase inhibitors. Nat Rev Drug Discov. 2006;5:769–784. PubMed
Brodeur GM. Neuroblastoma: biological insights into a clinical enigma. Nat Rev Cancer. 2003;3:203–216. PubMed
Catalano MG, Fortunati N, Pugliese M, Poli R, Bosco O, Mastrocola R, Aragno M, Boccuzzi G. Valproic acid, a histone deacetylase inhibitor, enhances sensitivity to doxorubicin in anaplastic thyroid cancer cells. J Endocrinol. 2006;191:465–472. PubMed
Chai G, Li L, Zhou W, Wu L, Zhao Y, Wang D, Lu S, Yu Y, Wang H, McNutt MA, Hu YG, Chen Y, Yang Y, Wu X, Otterson GA, Zhu WG. HDAC inhibitors act with 5-aza-2‘-deoxycytidine to inhibit cell proliferation by suppressing removal of incorporated abases in lung cancer cells. PLoS ONE. 2008;3:e2445. PubMed PMC
Cinatl J, Jr, Cinatl J, Scholz M, Driever PH, Henrich D, Kabickova H, Vogel JU, Doerr HW, Kornhuber B. Antitumor activity of sodium valproate in cultures of human neuroblastoma cells. Anticancer Drugs. 1996;7:766–773. PubMed
de Cremoux P, Jourdan-Da-Silva N, Couturier J, Tran-Perennou C, Schleiermacher G, Fehlbaum P, Doz F, Mosseri V, Delattre O, Klijanienko J, Vielh P, Michon J. Role of chemotherapy resistance genes in outcome of neuroblastoma. Pediatr Blood Cancer. 2007;48:311–317. PubMed
Emanuel SL, Chamberlin HA, Cohen D. Antimitotic drugs cause increased tumorigenicity of multidrug resistant cells. Int J Oncol. 1999;14:487–494. PubMed
Fossé P, René B, Charra M, Paoletti C, Saucier JM. Stimulation of topoisomerase II-mediated DNA cleavage by ellipticine derivatives: structure-activity relationships. Mol Pharmacol. 1992;42:590–595. PubMed
Froelich-Ammon SJ, Patchan MW, Osheroff N, Thompson RB. Topoisomerase II binds to ellipticine in the absence or presence of DNA. Characterization of enzyme-drug interactions by fluorescence spectroscopy. J Biol Chem. 1995;270:4998–5004. PubMed
Furchert SE, Lanvers-Kaminsky C, Juürgens H, Jung M, Loidl A, Frühwald MC. Inhibitors of histone deacetylases as potential therapeutic tools for high-risk embryonal tumors of the nervous system of childhood. Int J Cancer. 2007;120:1787–1794. PubMed
Gavelová M, Hladíková J, Vildová L, Novotná R, Vondrácek J, Krcmár P, Machala M, Skálová L. Reduction of doxorubicin and oracin and induction of carbonyl reductase in human breast carcinoma MCF-7 cells. Chem Biol Interact. 2008;176:9–18. PubMed
Hopkins-Donaldson S, Yan P, Bourloud KB, Muhlethaler A, Bodmer JL, Gross N. Doxorubicin-induced death in neuroblastoma does not involve death receptors in S-type cells and is caspase-independent in N-type cells. Oncogene. 2002;21:6132–37. PubMed
Hooven LA, Mahadevan B, Keshava C, Johns C, Pereira C, Desai D, Amin S, Weston A, Baird WM. Effects of suberoylanilide hydroxamic acid and trichostatin A on induction of cytochrome P450 enzymes and benzo[a]pyrene DNA adduct formation in human cells. Bioorg Med Chem Lett. 2005;15:1283–1287. PubMed
Hřebačková J, Poljaková J, Eckschlager T, Hraběta J, Procházka P, Smutný S, Stiborová M. Histone deacetylase inhibitors valproate and trichostatin A are toxic to neuroblastoma cells and modulate cytochrome P450 1A1, 1B1 and 3A4 expression in these cells. Interdisc Toxicol. 2009;2:205–210. PubMed PMC
Kim MS, Blake M, Baek JH, Kohlhagen G, Pommier Y, Carrier F. Inhibition of histone deacetylase increases cytotoxicity to anticancer drugs targeting DNA. Cancer Res. 2003;63:7291–7300. PubMed
Klener P. Anticancer chemotherapy (in Czech) Galén, Praha. 1996
Kotchetkov R, Driever PH, Cinatl J, Michaelis M, Karaskova J, Blaheta R, Squire JA, Von Deimling A, Moog J, Cinatl J., Jr Increased malignant behavior in neuroblastoma cells with acquired multi-drug resistance does not depend on P-gp expression. Int J Oncol. 2005;27:1029–1037. PubMed
Kucerova H, Sumerauer D, Drahokoupilova E, Piskova M, Bedrnicek J, Eckschlager T. Significance of P-glycoprotein expression in childhood malignant tumors. Neoplasma. 2001;48:472–478. PubMed
Kurowski C, Berthold F. Presence of classical multidrug resistance and P-glycoprotein expression in human neuroblastoma cells. Ann Oncol. 1998;9:1009–1014. PubMed
Lal S, Mahajan A, Chen WN, Chowbay B. Pharmacogenetics of target genes across doxorubicin disposition pathway: a review. Curr Drug Metab. 2010;11:115–128. PubMed
Lara-Bohórquez C, González-Cámpora R, Mendoza-García E, Ríos-Martín JJ, Pareja-Megía MJ, López-Beltrán A. TP53, BCL-2, p21Waf1/Cip1 and metallothionein as markers of differentiation, response to treatment and prognosis in neuroblastic tumors. Anal. Quant Cytol Histol. 2008;30:105–112. PubMed
Marchion DC, Bicaku E, Daud AI, Sullivan DM, Munster PN. Valproic acid alters chromatin structure by regulation of chromatin modulation proteins. Cancer Res. 2005a;65:3815–3822. PubMed
Marchion DC, Bicaku E, Daud AI, Sullivan DM, Munster PN. In vivo synergy between topoisomerase II and histone deacetylase inhibitors: predictive correlates. Mol. Cancer Ther. 2005b;4:1993–2000. PubMed
Maris JM, Matthay KK. Molecular biology of neuroblastoma. J Clin Oncol. 1999;17:2264–2279. PubMed
Maris JM, Hogarty MD, Bagatell R, Cohn SL. Neuroblastoma. Lancet. 2007;369:2106–2120. PubMed
Marks PA, Miller T, Richon VM. Histone deacetylases. Curr Opin Pharmacol. 2003;3:344–351. PubMed
Marks PA, Richon VM, Miller T, Kelly WK. Histone deacetylase inhibitors. Adv Cancer Res. 2004;91:137–168. PubMed
Merk HF, Jugert FK. Cutaneous NAD(P)H: quinone reductase: a xenobiotica-metabolizing enzyme with potential cancer and oxidation stress-protecting properties. Skin Pharmacol. 1991;1(4 Suppl):95–100. PubMed
Michaelis M, Suhan T, Cinatl J, Driever PH, Cinatl J., Jr Valproic acid and interferon-alpha synergistically inhibit neuroblastoma cell growth in vitro and in vivo. Int J Oncol. 2004;25:1795–1799. PubMed
Michaelis M, Doerr HW, Cinatl J., Jr Valproic acid as anti-cancer drug. Curr Pharm Des. 2007;13:3378–3393. PubMed
Monnot M, Mauffret O, Simon V, Lescot E, Psaume B, Saucier JM, Charra M, Belehradek J, Jr, Fermandjian S. DNA-drug recognition and effects on topoisomerase II-mediated cytotoxicity. A three-mode binding model for ellipticine derivatives. J Biol Chem. 1991;25:1820–1829. PubMed
Morgenstern BZ, Krivoshik AP, Rodriguez V, Anderson PM. Wilms‘ tumor and neuroblastoma. Acta Paediatr. 2004;93(Suppl):78–85. PubMed
Norris MD, Bordow SB, Marshall GM, Haber PS, Cohn SL, Haber M. Expression of the gene for multidrug-resistance-associated protein and outcome in patients with neuroblastoma. N Engl J Med. 1996;334:231–238. PubMed
Oesch-Bartlmowicz B, Oesch F. Modulation of mutagenicity by phosphorylation of mutagen-metabolizing enzymes. Arch Biochem Biophys. 2004;423:31–36. PubMed
Otter I, Conus S, Ravn U, Rager M, Olivier R, Monney L, Fabbro D, Borner C. The binding properties and biological activities of Bcl-2 and Bax in cells exposed to apoptotic stimuli. J Biol Chem. 1998;273:6110–6120. PubMed
Peaston AE, Gardaneh M, Franco AV, Hocker JE, Murphy KM, Farnsworth ML, Catchpoole DR, Haber M, Norris MD, Lock RB, Marshall GM. MRP1 gene expression level regulates the death and differentiation response of neuroblastoma cells. Br J Cancer. 2001;85:1564–1571. PubMed PMC
Poljaková J, Eckschlager T, Hřebačková J, Hraběta J, Stiborová M. The comparison of cytotoxicity of anticancer drug doxorubicin and ellipticine to human neuroblastoma cells. Interdisc Toxicol. 2008;1:186–189. PubMed PMC
Poljakova J, Eckschlager T, Hrabeta J, Hrebackova J, Smutny S, Frei E, Martinek V, Kizek R, Stiborova M. The mechanism of cytotoxicity and DNA adduct formation by the anticancer drug ellipticine in human neuroblastoma cells. Biochem Pharmacol. 2009;77:1466–1479. PubMed
Santini V, Gozzini A, Ferrari G. Histone deacetylase inhibitors: molecular and biological activity as a premise to clinical application. Curr Drug Metab. 2007;8:383–393. PubMed
Singh MP, Hill GC, Peoch D, Rayner B, Inabach JL, Lown JW. High-field NMR and restrained molecular modeling studies on a DNA heteroduplex containing a modified apurinic abasic site in the form of covalently linked 9-aminoellipticine. Biochemistry. 1994;33:10271–10285. PubMed
Song X, Liu X, Chi W, Liu Y, Wei L, Wang X, Yu J. Hypoxia-induced resistance to cisplatin and doxorubicin in non-small cell lung cancer is inhibited by silencing of HIF-1alpha gene. Cancer Chemother Pharmacol. 2006;58:776–784. PubMed
Stiborová M, Bieler CA, Wiessler M, Frei E. The anticancer agent ellipticine on activation by cytochrome P450 forms covalent DNA adducts. Biochem Pharmacol. 2001;62:675–684. PubMed
Stiborová M, Breuer A, Aimová D, Stiborová-Rupertová M, Wiessler M, Frei E. DNA adduct formation by the anticancer drug ellipticine in rats determined by 32P-postlabeling. Int J Cancer. 2003a;107:885–890. PubMed
Stiborová M, Stiborová-Rupertová M, Bořek-Dohalská L, Wiessler M, Frei E. Rat microsomes activating the anticancer drug ellipticine to species covalently binding to deoxyguanosine in DNA are a suitable model mimicking ellipticine bioactivation in humans. Chem Res Toxicol. 2003b;16:38–47. PubMed
Stiborová M, Sejbal J, Bořek-Dohalská L, Aimová D, Poljaková J, Forsterová K, Rupertová M, Wiesner J, Hudeček J, Wiessler M, Frei E. The anticancer drug ellipticine forms covalent DNA adducts, mediated by human cytochromes P450, through metabolism to 13-hydroxyellipticine and ellipticine N 2-oxide. Cancer Res. 2004;64:8374–8380. PubMed
Stiborová M, Rupertová M, Schmeiser HH, Frei E. Molecular mechanism of antineoplastic action of an anticancer drug ellipticine. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 2006;150:13–23. PubMed
Stiborová M, Poljaková J, Ryšlavá H, Dračínský M, Eckschlager T, Frei E. Mammalian peroxidases activate anticancer drug ellipticine to intermediates forming deoxyguanosine adducts in DNA identical to those found in vivo and generated from 12-hydroxyellipticine and 13-hydroxyellipticine. Int J Cancer. 2007a;120:243–251. PubMed
Stiborová M, Rupertová M, Aimová D, Ryšlavá H, Frei E. Formation and persistence of DNA adducts of anticancer drug ellipticine in rats. Toxicology. 2007b;236:50–60. PubMed
Stiborová M, Arlt VM, Henderson CJ, Wolf CR, Kotrbová V, Moserová M, Hudeček J, Phillips DH, Frei E. Role of hepatic cytochromes P450 in bioactivation of the anticancer drug ellipticine: studies with the hepatic NADPH: cytochrome P450 reductase null mouse. Toxicol Appl Pharmacol. 2008;226:318–327. PubMed
Stiborová M, Rupertová M, Frei E. Cytochrome P450- and peroxidase-mediated oxidation of anticancer alkaloid ellipticine dictates its anti-tumor efficiency. Biochim Biophys Acta. 2010 in press. PubMed
Schwab M. Human neuroblastoma: from basic science to clinical debut of cellular oncogenes. Naturwissenschaften. 1999;86:71–78. PubMed
Uccini S, Colarossi C, Scarpino S, Boldrini R, Natali PG, Nicotra MR, Perla FM, Mannarino O, Altavista P, Boglino C, Cappelli CA, Cozzi D, Donfrancesco A, Kokai G, Losty PD, McDowell HP, Dominici C. Morphological and molecular assessment of apoptotic mechanisms in peripheral neuroblastic tumours. Br J Cancer. 2006;95:49–55. PubMed PMC
van Schaik R. Cancer treatment and pharmacogenetics of cytochrome P450 enzymes. Invest New Drugs. 2005;23:513–522. PubMed
van Schaik RH. CYP450 pharmacogenetics for personalizing cancer therapy. Drug Resist Updat. 2008;11:77–98. PubMed
Voigt A, Hartmann P, Zintl F. Differentiation, proliferation and adhesion of human neuroblastoma cells after treatment with retinoic acid. Cell Adhes Commun. 2000;7:423–440. PubMed
Wang H, Tompkins L. CYP2B6: new insights into a historically overlooked cytochrome P450 isozyme. Curr Drug Metab. 2008;9:598–610. PubMed PMC
Westermann F, Schwab M. Genetic parameters of neuroblastomas. Cancer Lett. 2002;184:127–147. PubMed
Witt O, Deubzer HE, Lodrini M, Milde T, Oehme I. Targeting histone deacetylases in neuroblastoma. Curr Pharm Des. 2009;15:436–447. PubMed
Zhu WG, Otterson GA. The interaction of histone deacetylase inhibitors and DNA methyltransferase inhibitors in the treatment of human cancer cells. Curr Med Chem Anticancer Agents. 2003;3:187–199. PubMed