A nonfitting method using a spatial sine window transform for inhomogeneous effective-diffusion measurements by FRAP
Language English Country United States Media print
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
21244847
PubMed Central
PMC3021672
DOI
10.1016/j.bpj.2010.11.080
PII: S0006-3495(10)05187-8
Knihovny.cz E-resources
- MeSH
- Cell Nucleus metabolism MeSH
- Cell Line MeSH
- Chromosomal Proteins, Non-Histone chemistry genetics metabolism MeSH
- Diffusion MeSH
- Fluorescence MeSH
- Photobleaching MeSH
- Fluorescence Recovery After Photobleaching methods MeSH
- Chromobox Protein Homolog 5 MeSH
- Microscopy, Confocal methods MeSH
- Humans MeSH
- Mathematics MeSH
- Models, Molecular * MeSH
- Mice MeSH
- Reproducibility of Results MeSH
- Solutions MeSH
- Green Fluorescent Proteins metabolism MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Chromosomal Proteins, Non-Histone MeSH
- Chromobox Protein Homolog 5 MeSH
- Solutions MeSH
- Green Fluorescent Proteins MeSH
Determining averaged effective diffusion constants from experimental measurements of fluorescent proteins in an inhomogeneous medium in the presence of ligand-receptor interactions poses problems of analytical tractability. Here, we introduced a nonfitting method to evaluate the averaged effective diffusion coefficient of a region of interest (which may include a whole nucleus) by mathematical processing of the entire cellular two-dimensional spatial pattern of recovered fluorescence. Spatially and temporally resolved measurements of protein transport inside cells were obtained using the fluorescence recovery after photobleaching technique. Two-dimensional images of fluorescence patterns were collected by laser-scanning confocal microscopy. The method was demonstrated by applying it to an estimation of the mobility of green fluorescent protein-tagged heterochromatin protein 1 in the nuclei of living mouse embryonic fibroblasts. This approach does not require the mathematical solution of a corresponding system of diffusion-reaction equations that is typical of conventional fluorescence recovery after photobleaching data processing, and is most useful for investigating highly inhomogeneous areas, such as cell nuclei, which contain many protein foci and chromatin domains.
See more in PubMed
Sprague B.L., McNally J.G. FRAP analysis of binding: proper and fitting. Trends Cell Biol. 2005;15:84–91. PubMed
Festenstein R., Pagakis S.N., Kioussis D. Modulation of heterochromatin protein 1 dynamics in primary mammalian cells. Science. 2003;299:719–721. PubMed
Dundr M., Hoffmann-Rohrer U., Misteli T. A kinetic framework for a mammalian RNA polymerase in vivo. Science. 2002;298:1623–1626. PubMed
Shav-Tal Y., Darzacq X., Singer R.H. Dynamics of single mRNPs in nuclei of living cells. Science. 2004;304:1797–1800. PubMed PMC
Elsner M., Hashimoto H., Weiss M. Spatiotemporal dynamics of the COPI vesicle machinery. EMBO Rep. 2003;4:1000–1004. PubMed PMC
Giese B., Au-Yeung C.K., Müller-Newen G. Long term association of the cytokine receptor gp130 and the Janus kinase Jak1 revealed by FRAP analysis. J. Biol. Chem. 2003;278:39205–39213. PubMed
Shaw S.L., Kamyar R., Ehrhardt D.W. Sustained microtubule treadmilling in Arabidopsis cortical arrays. Science. 2003;300:1715–1718. PubMed
Smith A.J., Pfeiffer J.R., Wilson B.S. Microtubule-dependent transport of secretory vesicles in RBL-2H3 cells. Traffic. 2003;4:302–312. PubMed
von Wichert G., Haimovich B., Sheetz M.P. Force-dependent integrin–cytoskeleton linkage formation requires downregulation of focal complex dynamics by Shp2. EMBO J. 2003;22:5023–5035. PubMed PMC
Howell B.J., Moree B., Salmon E. Spindle checkpoint protein dynamics at kinetochores in living cells. Curr. Biol. 2004;14:953–964. PubMed
Peters R., Peters J., Bähr W. A microfluorimetric study of translational diffusion in erythrocyte membranes. Biochim. Biophys. Acta. 1974;367:282–294. PubMed
Axelrod D., Koppel D.E., Webb W.W. Mobility measurement by analysis of fluorescence photobleaching recovery kinetics. Biophys. J. 1976;16:1055–1069. PubMed PMC
Koppel D.E., Axelrod D., Webb W.W. Dynamics of fluorescence marker concentration as a probe of mobility. Biophys. J. 1976;16:1315–1329. PubMed PMC
Cole N.B., Smith C.L., Lippincott-Schwartz J. Diffusional mobility of Golgi proteins in membranes of living cells. Science. 1996;273:797–801. PubMed
Swaminathan R., Hoang C.P., Verkman A.S. Photobleaching recovery and anisotropy decay of green fluorescent protein GFP-S65T in solution and cells: cytoplasmic viscosity probed by green fluorescent protein translational and rotational diffusion. Biophys. J. 1997;72:1900–1907. PubMed PMC
Patterson G.H., Knobel S.M., Piston D.W. Use of the green fluorescent protein and its mutants in quantitative fluorescence microscopy. Biophys. J. 1997;73:2782–2790. PubMed PMC
Partikian A., Olveczky B., Verkman A.S. Rapid diffusion of green fluorescent protein in the mitochondrial matrix. J. Cell. Biol. 1998;140:821–829. PubMed PMC
Adams C.L., Chen Y.-T., Nelson W.J. Mechanisms of epithelial cell-cell adhesion and cell compaction revealed by high-resolution tracking of E-cadherin-green fluorescent protein. J. Cell. Biol. 1998;142:1105–1119. PubMed PMC
Houtsmuller A.B., Vermeulen W. Macromolecular dynamics in living cell nuclei revealed by fluorescence redistribution after photobleaching. Histochem. Cell. Biol. 2001;115:13–21. PubMed
Scholz M., Gross-Johannböcke C., Peters R. Measurement of nucleocytoplasmic transport by fluorescence microphotolysis and laser scanning microscopy. Cell. Biol. Int. Rep. 1988;12 709–27. PubMed
Tsibidis G.D., Ripoll J. Investigation of binding mechanisms of nuclear proteins using confocal scanning laser microscopy and FRAP. J. Theor. Biol. 2008;253:755–768. PubMed
Kao H.P., Abney J.R., Verkman A.S. Determinants of the translational mobility of a small solute in cell cytoplasm. J. Cell Biol. 1993;120:175–184. PubMed PMC
Verkman A.S. Diffusion in cells measured by fluorescence recovery after photobleaching. In: Marriott G., Parker I., editors. Biophotonics, Part A: Methods in Enzymology. Vol. 360. Academic Press; New York: 2003. pp. 635–648. PubMed
Bjarneson D.W., Petersen N.O. Effects of second order photobleaching on recovered diffusion parameters from fluorescence photobleaching recovery. Biophys. J. 1991;60:1128–1131. PubMed PMC
Blonk J.C.G., Don A., Birmingham J.J. Fluorescence photobleaching recovery in the confocal scanning light microscope. J. Microsc. 1993;169:363–374.
Braeckmans K., Peeters L., Demeester J. Three-dimensional fluorescence recovery after photobleaching with the confocal microscope. Biophys. J. 2003;85:2240–2252. PubMed PMC
Lopez A., Dupou L., Tocanne J. Fluorescence recovery after photobleaching (FRAP) experiments under conditions of uniform disk illumination. Biophys. J. 1988;53:963–970. PubMed PMC
Wedekind P., Kubitscheck U., Peters R. Line-scanning microphotolysis for diffraction-limited measurements of lateral diffusion. Biophys. J. 1996;71:1621–1632. PubMed PMC
Kubitscheck U., Wedekind P., Peters R. Three-dimensional diffusion measurements by scanning microphotolysis. J. Microsc. 1998;192:126–138.
Periasamy N., Verkman A.S. Analysis of fluorophore diffusion by continuous distributions of diffusion coefficients: application to photobleaching measurements of multicomponent and anomalous diffusion. Biophys. J. 1998;75:557–567. PubMed PMC
Wachsmuth M., Weidemann T., Langowski J. Analyzing intracellular binding and diffusion with continuous fluorescence photobleaching. Biophys. J. 2003;84:3353–3363. PubMed PMC
Lele T.P., Ingber D.E. A mathematical model to determine molecular kinetic rate constants under non-steady state conditions using fluorescence recovery after photobleaching (FRAP) Biophys. Chem. 2006;120:32–35. PubMed
Kang M., Kenworthy A.K. A closed-form analytic expression for FRAP formula for the binding diffusion model. Biophys. J. 2008;95:L13–L15. PubMed PMC
Tsay T., Jacobson K.A. Spatial Fourier analysis of video photobleaching measurements, principles and optimization. Biophys. J. 1991;60:360–368. PubMed PMC
Berk D.A., Yuan F., Jain R.K. Fluorescence photobleaching with spatial Fourier analysis: measurement of diffusion in light-scattering media. Biophys. J. 1993;65:2428–2436. PubMed PMC
Mueller F., Wach P., McNally J.G. Evidence for a common mode of transcription factor interaction with chromatin as revealed by improved quantitative fluorescence recovery after photobleaching. Biophys. J. 2008;94:3323–3339. PubMed PMC
Jonsson P., Jonsson M.P., Hook F. A method improving the accuracy of fluorescence recovery after photobleaching analysis. Biophys. J. 2008;95:5334–5348. PubMed PMC
Bulinski J.C., Odde D.J., Waterman-Storer C.M. Rapid dynamics of the microtubule binding of ensconsin in vivo. J. Cell Sci. 2001;114:3885–3897. PubMed
Coscoy S., Waharte F., Amblard F. Molecular analysis of microscopic ezrin dynamics by two-photon FRAP. Proc. Natl. Acad. Sci. USA. 2002;99:12813–12818. PubMed PMC
Sprague B.L., Pego R.L., McNally J.G. Analysis of binding reactions by fluorescence recovery after photobleaching. Biophys. J. 2004;86:3473–3495. PubMed PMC
Muller K.P., Erdel F., Rippe K. Multiscale analysis of dynamics and interactions of heterochromatin protein 1 by fluorescence fluctuation microscopy. Biophys. J. 2009;97:2876–2885. PubMed PMC
Saltzman W.M., Radomsky M.L., Cone R.A. Antibody diffusion in human cervical mucus. Biophys. J. 1994;66:508–515. PubMed PMC
Phiilles G.D.J. Translational diffusion coefficient of macroparticles in solvents of high viscosity. J. Phys. Chem. 1981;85:2838–2843.
Harnicarová Horáková A., Galiová G., Bártová E. Chromocenter integrity and epigenetic marks. J. Struct. Biol. 2010;169 124–33. PubMed
Bártová E., Pacherník J., Kozubek S. Nuclear levels and patterns of histone H3 modification and HP1 proteins after inhibition of histone deacetylases. J. Cell Sci. 2005;118:5035–5046. PubMed
Bártová E., Pacherník J., Kozubek S. Differentiation-specific association of HP1 α and HP1 β with chromocenters is correlated with clustering of TIF1 β at these sites. Histochem Cell Biol. 2007;127:375–388. PubMed
Cheutin T., McNairn A.J., Misteli T. Maintenance of stable heterochromatin domains by dynamic HP1 binding. Science. 2003;299:721–723. PubMed
Scaffidi P., Misteli T. Lamin A-dependent nuclear defects in human aging. Science. 2006;312:1059–1063. PubMed PMC
Shumaker D.K., Dechat T., Goldman R.D. Mutant nuclear lamin A leads to progressive alterations of epigenetic control in premature aging. Proc. Natl. Acad. Sci. USA. 2006;103:8703–8708. PubMed PMC