Retron Se72 utilizes a unique strategy of the self-priming initiation of reverse transcription
Jazyk angličtina Země Švýcarsko Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
21452087
PubMed Central
PMC11114809
DOI
10.1007/s00018-011-0671-0
Knihovny.cz E-zdroje
- MeSH
- 5' nepřekládaná oblast MeSH
- bakteriální proteiny genetika metabolismus MeSH
- bakteriální RNA genetika metabolismus MeSH
- DNA bakterií biosyntéza MeSH
- DNA primery chemie metabolismus MeSH
- konformace nukleové kyseliny MeSH
- messenger RNA chemie metabolismus MeSH
- molekulární sekvence - údaje MeSH
- polymerázová řetězová reakce MeSH
- reverzní transkriptasa genetika metabolismus MeSH
- ribonukleasa H metabolismus fyziologie MeSH
- Salmonella enzymologie MeSH
- sekvence nukleotidů MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- 5' nepřekládaná oblast MeSH
- bakteriální proteiny MeSH
- bakteriální RNA MeSH
- DNA bakterií MeSH
- DNA primery MeSH
- messenger RNA MeSH
- reverzní transkriptasa MeSH
- ribonuclease HI MeSH Prohlížeč
- ribonukleasa H MeSH
Unlike all of the other retrons, the bacterial retron reverse transcriptase RrtE is capable of synthesizing small double-stranded DNA (sdsDNA) from template RNA. In this study, we analyzed the biosynthesis of the sdsDNA by RrtE in detail. We found out that the initiation of reverse transcription was dependent on a novel self-priming mechanism utilizing a free 3'OH of RNA that is reverse-transcribed into sdsDNA. The priming of the sdsDNA synthesis was not dependent on any particular nucleotide being used as a donor of 3'OH (unlike all of the other retrons, which prime from 2'OH of a particular guanosine) or any particular nucleotide being introduced into the sdsDNA first. Due to the relaxed demands for the initiation of reverse transcription, RrtE has the potential to generate dsDNA from different RNA transcripts in vivo.
Zobrazit více v PubMed
Joyce GF. RNA evolution and the origins of life. Nature. 1989;338:217–224. doi: 10.1038/338217a0. PubMed DOI
Chiang CC, Kennell JC, Wanner LA, Lambowitz AM. A mitochondrial retroplasmid integrates into mitochondrial DNA by a novel mechanism involving the synthesis of a hybrid cDNA and homologous recombination. Mol Cell Biol. 1994;14:6419–6432. PubMed PMC
Fedorova O, Zingler N. Group II introns: structure, folding and splicing mechanism. Biol Chem. 2007;388:665–678. doi: 10.1515/BC.2007.090. PubMed DOI
Liu MS, Gingery M, Doulatov SR, Liu YC, Hodes A, Baker S, Davis P, Simmonds M, Churcher C, Mungall K, Quail MA, Preston A, Harvill ET, Maskell DJ, Eiserling FA, Parkhill J, Miller JF. Genomic and genetic analysis of Bordetella bacteriophages encoding reverse transcriptase-mediated tropism-switching cassettes. J Bacteriol. 2004;186:1503–1517. doi: 10.1128/JB.186.5.1503-1517.2004. PubMed DOI PMC
Dhundale A, Lampson B, Furuichi T, Inouye M, Inouye S. Structure of msDNA from Myxococcus xanthus––evidence for a long, self-annealing RNA precursor for the covalently linked, branched RNA. Cell. 1987;51:1105–1112. doi: 10.1016/0092-8674(87)90596-4. PubMed DOI
Lampson BC, Inouye M, Inouye S. Retrons, msDNA, and the bacterial genome. Cytogenet Genome Res. 2005;110:491–499. doi: 10.1159/000084982. PubMed DOI
Rychlik I, Sebkova A, Gregorova D, Karpiskova R. Low-molecular-weight plasmid of Salmonella enterica serovar Enteritidis codes for retron reverse transcriptase and influences phage resistance. J Bacteriol. 2001;183:2852–2858. doi: 10.1128/JB.183.9.2852-2858.2001. PubMed DOI PMC
Rychlik I, Karpiskova R, Faldynova M, Sisak F. Computer-assisted restriction endonuclease analysis of plasmid DNA in field strains of Salmonella enteritidis . Can J Microbiol. 1998;44:1183–1185. PubMed
Rychlik I, Svestkova A, Karpiskova R. Subdivision of Salmonella enterica serovar Enteritidis phage types PT14b and PT21 by plasmid profiling. Vet Microbiol. 2000;74:217–225. doi: 10.1016/S0378-1135(00)00185-1. PubMed DOI
Datsenko KA, Wanner BL. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci USA. 2000;97:6640–6645. doi: 10.1073/pnas.120163297. PubMed DOI PMC
Nam K, Hudson RHE, Chapman KB, Ganeshan K, Damha MJ, Boeke JD. Yeast lariat debranching enzyme––substrate and sequence specificity. J Biol Chem. 1994;269:20613–20621. PubMed
Herzer PJ, Inouye S, Inouye M. Retron-Ec107 is inserted into the Escherichia coli genome by replacing a palindromic 34 bp intergenic sequence. Mol Microbiol. 1992;6:345–354. doi: 10.1111/j.1365-2958.1992.tb01477.x. PubMed DOI
Rausch JW, Le Grice SF. ‘Binding, bending and bonding’: polypurine tract-primed initiation of plus-strand DNA synthesis in human immunodeficiency virus. Int J Biochem Cell Biol. 2004;36:1752–1766. doi: 10.1016/j.biocel.2004.02.016. PubMed DOI
Furuichi T, Inouye S, Inouye M. Biosynthesis and structure of stable branched RNA covalently linked to the 5′ end of multicopy single-stranded DNA of Stigmatella aurantiaca . Cell. 1987;48:55–62. doi: 10.1016/0092-8674(87)90355-2. PubMed DOI
Levin HL. An unusual mechanism of self-primed reverse transcription requires the RNase H domain of reverse transcriptase to cleave an RNA duplex. Mol Cell Biol. 1996;16:5645–5654. PubMed PMC
Butler M, Goodwin T, Simpson M, Singh M, Poulter R. Vertebrate LTR retrotransposons of the Tf1/sushi group. J Mol Evol. 2001;52:260–274. PubMed
Malik HS, Eickbush TH. Modular evolution of the integrase domain in the Ty3/Gypsy class of LTR retrotransposons. J Virol. 1999;73:5186–5190. PubMed PMC
Le Grice SF. “In the beginning”: initiation of minus strand DNA synthesis in retroviruses and LTR-containing retrotransposons. Biochemistry. 2003;42:14349–14355. doi: 10.1021/bi030201q. PubMed DOI
Tuiskunen A, Leparc-Goffart I, Boubis L, Monteil V, Klingström J, Tolou HJ, Lundkvist A, Plumet S. Self-priming of reverse transcriptase impairs strand-specific detection of dengue virus RNA. J Gen Virol. 2010;91:1019–1027. doi: 10.1099/vir.0.016667-0. PubMed DOI
Hsu MY, Inouye S, Inouye M. Structural requirements of the RNA precursor for the biosynthesis of the branched RNA-linked multicopy single-stranded DNA of Myxococcus xanthus . J Biol Chem. 1989;264:6214–6219. PubMed
Lampson BC, Viswanathan M, Inouye M, Inouye S. Reverse transcriptase from Escherichia coli exists as a complex with msDNA and is able to synthesize double-stranded DNA. J Biol Chem. 1990;265:8490–8496. PubMed
Lampson BC, Rice SA. Repetitive sequences found in the chromosome of the myxobacterium Nannocystis exedens are similar to msDNA: a possible retrotransposition event in bacteria. Mol Microbiol. 1997;23:813–823. doi: 10.1046/j.1365-2958.1997.2671627.x. PubMed DOI
Recchia GD, Hall RM. Origins of the mobile gene cassettes found in integrons. Trends Microbiol. 1997;5:389–394. doi: 10.1016/S0966-842X(97)01123-2. PubMed DOI
Chicken innate immune response to oral infection with Salmonella enterica serovar Enteritidis