Spatial distribution of glycerophospholipids in the ocular lens
Language English Country United States Media electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
21559377
PubMed Central
PMC3084859
DOI
10.1371/journal.pone.0019441
PII: PONE-D-11-01809
Knihovny.cz E-resources
- MeSH
- Cell Membrane metabolism MeSH
- Phosphatidylcholines metabolism MeSH
- Phosphatidylethanolamines metabolism MeSH
- Glycerophospholipids metabolism MeSH
- Ions MeSH
- Lipids chemistry MeSH
- Eye metabolism MeSH
- Lens, Crystalline metabolism MeSH
- Swine MeSH
- Sphingolipids chemistry MeSH
- Sphingomyelins metabolism MeSH
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization methods MeSH
- Spectroscopy, Fourier Transform Infrared methods MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Phosphatidylcholines MeSH
- Phosphatidylethanolamines MeSH
- Glycerophospholipids MeSH
- Ions MeSH
- Lipids MeSH
- Sphingolipids MeSH
- Sphingomyelins MeSH
Knowledge of the spatial distribution of lipids in the intraocular lens is important for understanding the physiology and biochemistry of this unique tissue and for gaining a better insight into the mechanisms underlying diseases of the lens. Following our previous study showing the spatial distribution of sphingolipids in the porcine lens, the current study used ultra performance liquid chromatography quadrupole time-of-flight mass spectrometry (UPLC-QTOFMS) to provide the whole lipidome of porcine lens and these studies were supplemented by matrix-assisted laser desorption ionization mass spectrometry imaging (MALDI MSI) of the lens using ultra-high resolution Fourier transform ion cyclotron resonance mass spectrometry (FTICR MS) to determine the spatial distribution of glycerophospholipids. Altogether 172 lipid species were identified with high confidence and their concentration was determined. Sphingomyelins, phosphatidylcholines, and phosphatidylethanolamines were the most abundant lipid classes. We then determined the spatial and concentration-dependent distributions of 20 phosphatidylcholines, 6 phosphatidylethanolamines, and 4 phosphatidic acids. Based on the planar molecular images of the lipids, we report the organization of fiber cell membranes within the ocular lens and suggest roles for these lipids in normal and diseased lenses.
See more in PubMed
Delaye M, Tardieu A. Short-range order of crystallin proteins accounts for eye lens transparency. Nature. 1983;302:415–417. PubMed
van Leyen K, Duvoisin RM, Engelhardt H, Wiedmann M. A function for lipoxygenase in programmed organelle degradation. Nature. 1998;395:392–395. PubMed
Sane P, Tuomisto F, Wiedmer SK, Nyman T, Vattulainen I, et al. Temperature-induced structural transition in-situ in porcine lens - Changes observed in void size distribution. Biochim Biophys Acta-Biomembranes. 2010;1798:958–965. PubMed
Borchman D, Delamere NA, McCauley LA, Paterson CA. Studies on the distribution of cholesterol, phospholipid, and protein in the human and bovine lens. Lens Eye Toxic Res. 1989;6:703–724. PubMed
Byrdwell WC, Borchman D, Porter RA, Taylor KG, Yappert MC. Separation and characterization of the unknown phospholipid in human lens membranes. Invest Ophthalmol Vis Sci. 1994;35:4333–4343. PubMed
Mulders SM, Preston GM, Deen PM, Guggino WB, van Os CH, et al. Water channel properties of major intrinsic protein of lens. J Biol Chem. 1995;270:9010–9016. PubMed
Rujoi M, Estrada R, Yappert MC. In situ MALDI-TOF MS regional analysis of neutral phospholipids in lens tissue. Anal Chem. 2004;76:1657–1663. PubMed
Li LK, So L, Spector A. Membrane cholesterol and phospholipid in consecutive concentric sections of human lenses. J Lipid Res. 1985;26:600–609. PubMed
Vidova V, Pol J, Volny M, Novak P, Havlicek V, et al. Visualizing spatial lipid distribution in porcine lens by MALDI imaging high-resolution mass spectrometry. J Lipid Res. 2010;51:2298–2302. PubMed PMC
Heeren RM, Smith DF, Stauber J, Kukrer-Kaletas B, MacAleese L. Imaging mass spectrometry: hype or hope? J Am Soc Mass Spectrom. 2009;20:1006–1014. PubMed
Seeley EH, Caprioli RM. Molecular imaging of proteins in tissues by mass spectrometry. Proc Natl Acad Sci U S A. 2008;105:18126–18131. PubMed PMC
Cornett DS, Reyzer ML, Chaurand P, Caprioli RM. MALDI imaging mass spectrometry: molecular snapshots of biochemical systems. Nat Methods. 2007;4:828–833. PubMed
Wiseman JM, Ifa DR, Song Q, Cooks RG. Tissue imaging at atmospheric pressure using desorption electrospray ionization (DESI) mass spectrometry. Angew Chem Int Ed Engl. 2006;45:7188–7192. PubMed
Fletcher JS. Cellular imaging with secondary ion mass spectrometry. Analyst. 2009;134:2204–2215. PubMed
Wiseman JM, Ifa DR, Zhu Y, Kissinger CB, Manicke NE, et al. Desorption electrospray ionization mass spectrometry: Imaging drugs and metabolites in tissues. Proc Natl Acad Sci U S A. 2008;105:18120–18125. PubMed PMC
Ostrowski SG, Van Bell CT, Winograd N, Ewing AG. Mass spectrometric imaging of highly curved membranes during Tetrahymena mating. Science. 2004;305:71–73. PubMed PMC
Chughtai K, Heeren RM. Mass spectrometric imaging for biomedical tissue analysis. Chem Rev. 2010;110:3237–3277. PubMed PMC
McDonnell LA, Heeren RMA. Imaging mass spectrometry. Mass Spectrometry Rev. 2007;26:606–643. PubMed
Altelaar AFM, Luxembourg SL, McDonnell LA, Piersma SR, Heeren RMA. Imaging mass spectrometry at cellular length scales. Nature Protocols. 2007;2:1185–1196. PubMed
Deeley JM, Mitchell TW, Wei XJ, Korth J, Nealon JR, et al. Human lens lipids differ markedly from those of commonly used experimental animals. Biochim Biophys Acta Mol Cell Biol Lipids. 2008;1781:288–298. PubMed
Borchman D, Yappert MC. Lipids and the ocular lens. J Lipid Res. 2010;51:2473–2488. PubMed PMC
Estrada R, Yappert MC. Regional phospholipid analysis of porcine lens membranes by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Journal of Mass Spectrometry. 2004;39:1531–1540. PubMed
Yappert MC, Rujoi M, Borchman D, Vorobyov I, Estrada R. Glycero-versus sphingo-phospholipids: correlations with human and non-human mammalian lens growth. Exp Eye Res. 2003;76:725–734. PubMed
Deeley JM, Hankin JA, Friedrich MG, Murphy RC, Truscott RJ, et al. Sphingolipid distribution changes with age in the human lens. J Lipid Res. 2010;51:2753–2760. PubMed PMC
Ellis SR, Wu C, Deeley JM, Zhu X, Truscott RJ, et al. Imaging of Human Lens Lipids by Desorption Electrospray Ionization Mass Spectrometry. J Am Soc Mass Spectrom. 2010;21:2095–2104. PubMed
Cantor RS. Solute modulation of conformational equilibria in intrinsic membrane proteins: apparent “Cooperativity” without binding. Biophys J. 1999;77:2643–2647. PubMed PMC
Han J, Schey KL. MALDI tissue Imaging of ocular lens alpha-crystallin. Invest Ophthalmol Vis Sci. 2006;47:2990–2996. PubMed
Grey AC, Chaurand P, Caprioli RM, Schey KL. MALDI Imaging Mass Spectrometry of Integral Membrane Proteins from Ocular Lens and Retinal Tissue. J Proteome Res. 2009;8:3278–3283. PubMed PMC
Grey AC, Schey KL. Age-Related Changes in the Spatial Distribution of Human Lens alpha-Crystallin Products by MALDI Imaging Mass Spectrometry. Invest Ophthalmol Vis Sci. 2009;50:4319–4329. PubMed PMC
Strohalm M, Kavan D, Novak P, Volny M, Havlicek V. mMass 3: A Cross-Platform Software Environment for Precise Analysis of Mass Spectrometric Data. Anal Chem. 2010;82:4648–4651. PubMed
Lipid Maps consortium website. Available: www.lipidmaps.org. Accessed 2011 Mar 6.
Huang L, Grami V, Marrero Y, Tang DX, Yappert MC, et al. Human lens phospholipid changes with age and cataract. Invest Ophthalmol Vis Sci. 2005;46:1682–1689. PubMed