Mutations in DNAJC5, encoding cysteine-string protein alpha, cause autosomal-dominant adult-onset neuronal ceroid lipofuscinosis
Language English Country United States Media print-electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
21820099
PubMed Central
PMC3155175
DOI
10.1016/j.ajhg.2011.07.003
PII: S0002-9297(11)00297-7
Knihovny.cz E-resources
- MeSH
- Genes, Dominant genetics MeSH
- Adult MeSH
- Exons genetics MeSH
- Genetic Linkage MeSH
- Gene Dosage genetics MeSH
- Humans MeSH
- Lipoylation MeSH
- Lysosomes metabolism ultrastructure MeSH
- Membrane Proteins genetics MeSH
- Molecular Sequence Data MeSH
- Brain metabolism pathology ultrastructure MeSH
- Mutation genetics MeSH
- Neuronal Ceroid-Lipofuscinoses epidemiology genetics pathology MeSH
- Neurons metabolism pathology ultrastructure MeSH
- HSP40 Heat-Shock Proteins genetics MeSH
- Gene Expression Regulation MeSH
- Family MeSH
- Pedigree MeSH
- Chromosome Segregation genetics MeSH
- Base Sequence MeSH
- Sequence Analysis, DNA MeSH
- Protein Transport MeSH
- Age of Onset MeSH
- Check Tag
- Adult MeSH
- Humans MeSH
- Male MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- cysteine string protein MeSH Browser
- Membrane Proteins MeSH
- HSP40 Heat-Shock Proteins MeSH
Autosomal-dominant adult-onset neuronal ceroid lipofuscinosis (ANCL) is characterized by accumulation of autofluorescent storage material in neural tissues and neurodegeneration and has an age of onset in the third decade of life or later. The genetic and molecular basis of the disease has remained unknown for many years. We carried out linkage mapping, gene-expression analysis, exome sequencing, and candidate-gene sequencing in affected individuals from 20 families and/or individuals with simplex cases; we identified in five individuals one of two disease-causing mutations, c.346_348delCTC and c.344T>G, in DNAJC5 encoding cysteine-string protein alpha (CSPα). These mutations-causing a deletion, p.Leu116del, and an amino acid exchange, p.Leu115Arg, respectively-are located within the cysteine-string domain of the protein and affect both palmitoylation-dependent sorting and the amount of CSPα in neuronal cells. The resulting depletion of functional CSPα might cause in parallel the presynaptic dysfunction and the progressive neurodegeneration observed in affected individuals and lysosomal accumulation of misfolded and proteolysis-resistant proteins in the form of characteristic ceroid deposits in neurons. Our work represents an important step in the genetic dissection of a genetically heterogeneous group of ANCLs. It also confirms a neuroprotective role for CSPα in humans and demonstrates the need for detailed investigation of CSPα in the neuronal ceroid lipofuscinoses and other neurodegenerative diseases presenting with neuronal protein aggregation.
Am J Hum Genet. 2011 Oct 7;89(4):589 PubMed
See more in PubMed
Mole S.E., Williams R.E., Goebel H.H. Oxford University Press; Oxford: 2011. The Neuronal Ceroid Lipofuscinoses (Batten Disease)
Arsov T., Smith K.R., Damiano J., Franceschetti S., Canafoglia L., Bromhead C.J., Andermann E., Vears D.F., Cossette P., Rajagopalan S. Kufs disease, the major adult form of neuronal ceroid lipofuscinosis, caused by mutations in CLN6. Am. J. Hum. Genet. 2011;88:566–573. PubMed PMC
Boehme D.H., Cottrell J.C., Leonberg S.C., Zeman W. A dominant form of neuronal ceroid-lipofuscinosis. Brain. 1971;94:745–760. PubMed
Ferrer I., Arbizu T., Peña J., Serra J.P. A golgi and ultrastructural study of a dominant form of Kufs' disease. J. Neurol. 1980;222:183–190. PubMed
Josephson S.A., Schmidt R.E., Millsap P., McManus D.Q., Morris J.C. Autosomal dominant Kufs' disease: A cause of early onset dementia. J. Neurol. Sci. 2001;188:51–60. PubMed
Burneo J.G., Arnold T., Palmer C.A., Kuzniecky R.I., Oh S.J., Faught E. Adult-onset neuronal ceroid lipofuscinosis (Kufs disease) with autosomal dominant inheritance in Alabama. Epilepsia. 2003;44:841–846. PubMed
Sims K.B., Cole A.J., Sherman J.C., Caruso P.A., Snuderl M. Case records of the Massachusetts General Hospital. Case 8-2011. A 32-year-old woman with seizures and cognitive decline. N. Engl. J. Med. 2011;364:1062–1074. PubMed
Nijssen P.C., Brusse E., Leyten A.C., Martin J.J., Teepen J.L., Roos R.A. Autosomal dominant adult neuronal ceroid lipofuscinosis: Parkinsonism due to both striatal and nigral dysfunction. Mov. Disord. 2002;17:482–487. PubMed
Abecasis G.R., Cherny S.S., Cookson W.O., Cardon L.R. Merlin—rapid analysis of dense genetic maps using sparse gene flow trees. Nat. Genet. 2002;30:97–101. PubMed
Thiele H., Nürnberg P. HaploPainter: A tool for drawing pedigrees with complex haplotypes. Bioinformatics. 2005;21:1730–1732. PubMed
Li H., Handsaker B., Wysoker A., Fennell T., Ruan J., Homer N., Marth G., Abecasis G., Durbin R., 1000 Genome Project Data Processing Subgroup The Sequence Alignment/Map format and SAMtools. Bioinformatics. 2009;25:2078–2079. PubMed PMC
Jiang H., Orr A., Guernsey D.L., Robitaille J., Asselin G., Samuels M.E., Dubé M.P. Application of homozygosity haplotype analysis to genetic mapping with high-density SNP genotype data. PLoS ONE. 2009;4:e5280. PubMed PMC
Landmann L. Deconvolution improves colocalization analysis of multiple fluorochromes in 3D confocal data sets more than filtering techniques. J. Microsc. 2002;208:134–147. PubMed
Manders E.M.M., Verbeek F.J., Aten J.A. Measurement of Colocalization of Objects in Dual-Color Confocal Images. Journal of Microscopy. 1993;169:375–382. PubMed
Greaves J., Salaun C., Fukata Y., Fukata M., Chamberlain L.H. Palmitoylation and membrane interactions of the neuroprotective chaperone cysteine-string protein. J. Biol. Chem. 2008;283:25014–25026. PubMed PMC
Greaves J., Chamberlain L.H. Dual role of the cysteine-string domain in membrane binding and palmitoylation-dependent sorting of the molecular chaperone cysteine-string protein. Mol. Biol. Cell. 2006;17:4748–4759. PubMed PMC
Chamberlain L.H., Burgoyne R.D. The cysteine-string domain of the secretory vesicle cysteine-string protein is required for membrane targeting. Biochem. J. 1998;335:205–209. PubMed PMC
Swayne L.A., Blattler C., Kay J.G., Braun J.E. Oligomerization characteristics of cysteine string protein. Biochem. Biophys. Res. Commun. 2003;300:921–926. PubMed
Xu F., Proft J., Gibbs S., Winkfein B., Johnson J.N., Syed N., Braun J.E. Quercetin targets cysteine string protein (CSPalpha) and impairs synaptic transmission. PLoS ONE. 2010;5:e11045. PubMed PMC
Gibbs S.J., Barren B., Beck K.E., Proft J., Zhao X., Noskova T., Braun A.P., Artemyev N.O., Braun J.E. Hsp40 couples with the CSPalpha chaperone complex upon induction of the heat shock response. PLoS ONE. 2009;4:e4595. PubMed PMC
Sakisaka T., Meerlo T., Matteson J., Plutner H., Balch W.E. Rab-alphaGDI activity is regulated by a Hsp90 chaperone complex. EMBO J. 2002;21:6125–6135. PubMed PMC
Rosales-Hernandez A., Beck K.E., Zhao X., Braun A.P., Braun J.E. RDJ2 (DNAJA2) chaperones neural G protein signaling pathways. Cell Stress Chaperones. 2009;14:71–82. PubMed PMC
Zinsmaier K.E., Eberle K.K., Buchner E., Walter N., Benzer S. Paralysis and early death in cysteine string protein mutants of Drosophila. Science. 1994;263:977–980. PubMed
Fernández-Chacón R., Wölfel M., Nishimune H., Tabares L., Schmitz F., Castellano-Muñoz M., Rosenmund C., Montesinos M.L., Sanes J.R., Schneggenburger R., Südhof T.C. The synaptic vesicle protein CSP alpha prevents presynaptic degeneration. Neuron. 2004;42:237–251. PubMed
Schmitz F., Tabares L., Khimich D., Strenzke N., de la Villa-Polo P., Castellano-Muñoz M., Bulankina A., Moser T., Fernández-Chacón R., Südhof T.C. CSPalpha-deficiency causes massive and rapid photoreceptor degeneration. Proc. Natl. Acad. Sci. USA. 2006;103:2926–2931. PubMed PMC
Burgoyne R.D., Morgan A. Chaperoning the SNAREs: A role in preventing neurodegeneration? Nat. Cell Biol. 2011;13:8–9. PubMed
García-Junco-Clemente P., Cantero G., Gómez-Sánchez L., Linares-Clemente P., Martínez-López J.A., Luján R., Fernández-Chacón R. Cysteine string protein-alpha prevents activity-dependent degeneration in GABAergic synapses. J. Neurosci. 2010;30:7377–7391. PubMed PMC
Burré J., Sharma M., Tsetsenis T., Buchman V., Etherton M.R., Südhof T.C. Alpha-synuclein promotes SNARE-complex assembly in vivo and in vitro. Science. 2010;329:1663–1667. PubMed PMC
Sharma M., Burré J., Südhof T.C. CSPα promotes SNARE-complex assembly by chaperoning SNAP-25 during synaptic activity. Nat. Cell Biol. 2011;13:30–39. PubMed
Johnson J.N., Ahrendt E., Braun J.E. CSPalpha: The neuroprotective J protein. Biochem. Cell Biol. 2010;88:157–165. PubMed
Nijssen P.C., Brekelmans G.J., Roos R.A. Electroencephalography in autosomal dominant adult neuronal ceroid lipofuscinosis. Clin. Neurophysiol. 2009;120:1782–1786. PubMed
Nijssen P.C., Ceuterick C., van Diggelen O.P., Elleder M., Martin J.J., Teepen J.L., Tyynelä J., Roos R.A. Autosomal dominant adult neuronal ceroid lipofuscinosis: A novel form of NCL with granular osmiophilic deposits without palmitoyl protein thioesterase 1 deficiency. Brain Pathol. 2003;13:574–581. PubMed PMC
Poët M., Kornak U., Schweizer M., Zdebik A.A., Scheel O., Hoelter S., Wurst W., Schmitt A., Fuhrmann J.C., Planells-Cases R. Lysosomal storage disease upon disruption of the neuronal chloride transport protein ClC-6. Proc. Natl. Acad. Sci. USA. 2006;103:13854–13859. PubMed PMC
Reif A., Schneider M.F., Hoyer A., Schneider-Gold C., Fallgatter A.J., Roggendorf W., Pfuhlmann B. Neuroleptic malignant syndrome in Kufs' disease. J. Neurol. Neurosurg. Psychiatry. 2003;74:385–387. PubMed PMC
Diagnosis and misdiagnosis of adult neuronal ceroid lipofuscinosis (Kufs disease)
Mutations in ANTXR1 cause GAPO syndrome
GEO
GSE30369