Searching for mechanisms that matter in early septic acute kidney injury: an experimental study
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
22030145
PubMed Central
PMC3334807
DOI
10.1186/cc10517
PII: cc10517
Knihovny.cz E-zdroje
- MeSH
- akutní poškození ledvin krev etiologie patofyziologie MeSH
- biologické markery krev MeSH
- časové faktory MeSH
- hemodynamika fyziologie MeSH
- interleukin-6 krev MeSH
- modely nemocí na zvířatech MeSH
- oxidační stres fyziologie MeSH
- prasata MeSH
- sepse komplikace MeSH
- TNF-alfa krev MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- biologické markery MeSH
- interleukin-6 MeSH
- TNF-alfa MeSH
INTRODUCTION: In almost half of all sepsis patients, acute kidney injury (AKI) develops. However, the pathobiologic differences between sepsis patients with and without AKI are only poorly understood. We used a unique opportunity to examine dynamic inflammatory, renal hemodynamic, and microvascular changes in two clinically relevant large-animal models of sepsis. Our aim was to assess variability in renal responses to sepsis and to identify both hemodynamic and nonhemodynamic mechanisms discriminating individuals with AKI from those in whom AKI did not develop. METHODS: Thirty-six pigs were anesthetized, mechanically ventilated, and instrumented. After a recovery period, progressive sepsis was induced either by peritonitis (n = 13) or by continuous intravenous infusion of live Pseudomonas aeruginosa (n = 15). Eight sham operated-on animals served as time-matched controls. All animals received standard intensive care unit (ICU) care, including goal-directed hemodynamic management. Before, and at 12, 18, and 22 hours of sepsis, systemic and renal (ultrasound flow probe) hemodynamics, renal cortex microcirculation (laser Doppler), inflammation (interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-α), oxidative stress (thiobarbituric acid reactive species (TBARS), nitrite/nitrate concentrations (NOx), and renal oxygen kinetics and energy metabolism were measured. RESULTS: In 14 (50%) pigs, AKI developed (62% in peritonitis, 40% in bacteria infusion model). Fecal peritonitis resulted in hyperdynamic circulation, whereas continuous bacteria infusion was associated with normodynamic hemodynamics. Despite insults of equal magnitude, comparable systemic hemodynamic response, and uniform supportive treatment, only those pigs with AKI exhibited a progressive increase in renal vascular resistance. This intrarenal vasoconstriction occurred predominantly in the live-bacteria infusion model. In contrast to AKI-free animals, the development of septic AKI was preceded by early and remarkable inflammatory response (TNF-α, IL-6) and oxidative stress (TBARS). CONCLUSIONS: The observed variability in susceptibility to septic AKI in our models replicates that of human disease. Early abnormal host response accompanied by subsequent uncoupling between systemic and renal vascular resistance appear to be major determinants in the early phase of porcine septic AKI. Nonuniform and model-related renal hemodynamic responses that are unpredictable from systemic changes should be taken into consideration when evaluating hemodynamic therapeutic interventions in septic AKI.
Zobrazit více v PubMed
Zarjou A, Agarwal A. Sepsis and acute kidney injury. J Am Soc Nephrol. 2011;22:999–1006. doi: 10.1681/ASN.2010050484. PubMed DOI
Murugan R, Kellum JA. Acute kidney injury: what's the prognosis? Nat Rev Nephrol. 2011;7:209–217. doi: 10.1038/nrneph.2011.13. PubMed DOI PMC
Parmar A, Langenberg C, Wan L, May CN, Bellomo R, Bagshaw SM. Epidemiology of septic acute kidney injury. Curr Drug Targets. 2009;10:1169–1178. doi: 10.2174/138945009789753183. PubMed DOI
Bagshaw SM, George C, Bellomo R. Early acute kidney injury and sepsis: a multicentre evaluation. Crit Care. 2008;12:R47. PubMed PMC
Oppert M, Engel C, Brunkhorst FM, Bogatsch H, Reinhart K, Frei U, Eckardt KU, Loeffler M, John S. Acute renal failure in patients with severe sepsis and septic shock: a significant independent risk factor for mortality: results from the German Prevalence Study. Nephrol Dial Transplant. 2008;23:904–909. PubMed
Vincent JL, Sakr Y, Sprung CL, Ranieri VM, Reinhart K, Gerlach H, Moreno R, Carlet J, Le Gall Jr, Payen D. Sepsis in European intensive care units: results of the SOAP study. Crit Care Med. 2006;34:344–353. doi: 10.1097/01.CCM.0000194725.48928.3A. PubMed DOI
Wan L, Bagshaw SM, Langenberg C, Saotome T, May C, Bellomo R. Pathophysiology of septic acute kidney injury: what do we really know? Crit Care Med. 2008;36:S198–S203. doi: 10.1097/CCM.0b013e318168ccd5. PubMed DOI
Chvojka J, Sykora R, Karvunidis T, Radej J, Krouzecky A, Novak I, Matejovic M. New developments in septic acute kidney injury. Physiol Res. 2010;59:859–869. PubMed
Chawla LS, Seneff MG, Nelson DR, Williams M, Levy H, Kimmel PL, Macias WL. Elevated plasma concentrations of IL-6 and elevated APACHE II score predict acute kidney injury in patients with severe sepsis. Clin J Am Soc Nephrol. 2007;2:22–30. PubMed
Murugan R, Karajala-Subramanyam V, Lee M, Yende S, Kong L, Carter M, Angus DC, Kellum JA. Acute kidney injury in non-severe pneumonia is associated with an increased immune response and lower survival. Kidney Int. 2010;77:527–535. doi: 10.1038/ki.2009.502. PubMed DOI PMC
Doi K, Leelahavanichkul A, Yuen PS, Star RA. Animal models of sepsis and sepsis-induced kidney injury. J Clin Invest. 2009;119:2868–2878. doi: 10.1172/JCI39421. PubMed DOI PMC
Holly MK, Dear JW, Hu X, Schechter AN, Gladwin MT, Hewitt SM, Yuen PS, Star RA. Biomarker and drug-target discovery using proteomics in a new rat model of sepsis-induced acute renal failure. Kidney Int. 2006;70:496–506. PubMed PMC
Sykora R, Chvojka J, Krouzecky A, Radej J, Karvunidis T, Varnerova V, Novak I, Matejovic M. High versus standard-volume haemofiltration in hyperdynamic porcine peritonitis: effects beyond haemodynamics? Intensive Care Med. 2009;35:371–380. doi: 10.1007/s00134-008-1318-y. PubMed DOI
Sykora R, Chvojka J, Krouzecky A, Radej J, Kuncova J, Varnerova V, Karvunidis T, Novak I, Matejovic M. Coupled plasma filtration adsorption in experimental peritonitis-induced septic shock. Shock. 2009;31:473–480. doi: 10.1097/SHK.0b013e318188dec5. PubMed DOI
Chvojka J, Sykora R, Krouzecky A, Radej J, Varnerova V, Karvunidis T, Hes O, Novak I, Radermacher P, Matejovic M. Renal haemodynamic, microcirculatory, metabolic and histopathological responses to peritonitis-induced septic shock in pigs. Crit Care. 2008;12:R164. PubMed PMC
Mehta RL, Kellum JA, Shah SV, Molitoris BA, Ronco C, Warnock D, Levin A. Acute Kidney Injury Network: report of an initiative to improve outcomes in acute kidney injury. Crit Care. 2007;11:R31. doi: 10.1186/cc5713. PubMed DOI PMC
Bagshaw SM, Lapinsky S, Dial S, Arabi Y, Dodek P, Wood G, Ellis P, Guzman J, Marshall J, Parrillo JE, Skrobik Y, Kumar A. Acute kidney injury in septic shock: clinical outcomes and impact of duration of hypotension prior to initiation of antimicrobial therapy. Intensive Care Med. 2009;35:871–881. doi: 10.1007/s00134-008-1367-2. PubMed DOI
Langenberg C, Bellomo R, May C, Wan L, Egi M, Morgera S. Renal blood flow in sepsis. Crit Care. 2005;9:R363–R374. doi: 10.1186/cc3540. PubMed DOI PMC
Langenberg C, Bellomo R, May CN, Egi M, Wan L, Morgera S. Renal vascular resistance in sepsis. Nephron Physiol. 2006;104:1–11. doi: 10.1159/000093275. PubMed DOI
Schrier RW, Wang W. Acute renal failure and sepsis. N Engl J Med. 2004;351:159–169. doi: 10.1056/NEJMra032401. PubMed DOI
Lerolle N, Guerot E, Faisy C, Bornstain C, Diehl JL, Fagon JY. Renal failure in septic shock: predictive value of Doppler-based renal arterial resistive index. Intensive Care Med. 2006;32:1553–1559. doi: 10.1007/s00134-006-0360-x. PubMed DOI
Di GD, Morimatsu H, May CN, Bellomo R. Increasing renal blood flow: low-dose dopamine or medium-dose norepinephrine. Chest. 2004;125:2260–2267. doi: 10.1378/chest.125.6.2260. PubMed DOI
Langenberg C, Wan L, Egi M, May CN, Bellomo R. Renal blood flow and function during recovery from experimental septic acute kidney injury. Intensive Care Med. 2007;33:1614–1618. doi: 10.1007/s00134-007-0734-8. PubMed DOI
Langenberg C, Wan L, Egi M, May CN, Bellomo R. Renal blood flow in experimental septic acute renal failure. Kidney Int. 2006;69:1996–2002. doi: 10.1038/sj.ki.5000440. PubMed DOI
Langenberg C, Wan L, Bagshaw SM, Egi M, May CN, Bellomo R. Urinary biochemistry in experimental septic acute renal failure. Nephrol Dial Transplant. 2006;21:3389–3397. doi: 10.1093/ndt/gfl541. PubMed DOI
Lieberthal W, Nigam SK. Acute renal failure, II. Experimental models of acute renal failure: imperfect but indispensable. Am J Physiol Renal Physiol. 2000;278:F1–F12. PubMed
Kinsey GR, Li L, Okusa MD. Inflammation in acute kidney injury. Nephron Exp Nephrol. 2008;109:e102–e107. doi: 10.1159/000142934. PubMed DOI PMC
Wen X, Murugan R, Peng Z, Kellum JA. Pathophysiology of acute kidney injury: a new perspective. Contrib Nephrol. 2010;165:39–45. PubMed
Hoste EA, Lameire NH, Vanholder RC, Benoit DD, Decruyenaere JM, Colardyn FA. Acute renal failure in patients with sepsis in a surgical ICU: predictive factors, incidence, comorbidity, and outcome. J Am Soc Nephrol. 2003;14:1022–1030. doi: 10.1097/01.ASN.0000059863.48590.E9. PubMed DOI
Modeling sepsis, with a special focus on large animal models of porcine peritonitis and bacteremia
Molecular differences in susceptibility of the kidney to sepsis-induced kidney injury
Renal Hemodynamics in AKI: In Search of New Treatment Targets