Molecular differences in susceptibility of the kidney to sepsis-induced kidney injury
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články
PubMed
28569136
PubMed Central
PMC5452356
DOI
10.1186/s12882-017-0602-x
PII: 10.1186/s12882-017-0602-x
Knihovny.cz E-zdroje
- Klíčová slova
- Acute kidney injury, Animal models, Gene expression, Sepsis,
- MeSH
- akutní poškození ledvin genetika mikrobiologie patofyziologie MeSH
- cyklooxygenasa 2 genetika MeSH
- exprese genu * MeSH
- genetická predispozice k nemoci MeSH
- hemodynamika MeSH
- interleukin-6 krev MeSH
- kaspasa 3 genetika MeSH
- modely nemocí na zvířatech MeSH
- PPARGC1A genetika MeSH
- prasata MeSH
- receptory angiotensinu genetika MeSH
- sepse komplikace patofyziologie MeSH
- TNF-alfa krev MeSH
- toll-like receptor 4 genetika MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- cyklooxygenasa 2 MeSH
- interleukin-6 MeSH
- kaspasa 3 MeSH
- PPARGC1A MeSH
- receptory angiotensinu MeSH
- TNF-alfa MeSH
- toll-like receptor 4 MeSH
BACKGROUND: Septic acute kidney injury affects 40-50% of all septic patients. Molecular differences between septic patients with and without acute kidney injury (AKI) are only poorly understood. Here, we investigated gene expression changes that differentiated the subjects who developed septic AKI from those who did not and coupled this approach with traditional parameters of renal physiology. METHODS: In 15 anesthetized, mechanically ventilated and instrumented pigs, progressive sepsis was induced either by peritonitis or by continuous intravenous infusion of Pseudomonas aeruginosa. Animals received standard intensive care including goal-directed hemodynamic management. Analyses were performed on kidneys from sham operated animals, septic pigs without AKI, and pigs with septic AKI. Before, and at 12, 18 and 22 h of progressive sepsis, systemic and renal hemodynamics, cortex microcirculation and plasma IL-6 and TNF-α were measured. At 22 h whole kidney expression of pre-selected genes was analyzed by quantitative Real Time PCR. RESULTS: Animals with septic AKI had systemic hemodynamic phenotype (normo- or hyperdynamic) comparable with non-AKI subjects, but demonstrated higher plasma levels of cytokines, an increase in renal vascular resistance and early fall in cortical microcirculatory blood flow. The genes whose expression discriminated septic AKI from non-AKI included Toll like receptor 4 (up-regulated 2.7-fold, P = 0.04); Cyclooxygenase-2 (up-regulated 14.6-fold, P = 0.01), Angiotensin II Receptor (up-regulated 8.1-fold, P = 0.01), Caspase 3 (up-regulated 5.1-fold, P = 0.02), Peroxisome Proliferator-Activated Receptor Gamma, Coactivator 1 Alpha (down-regulated 2-fold, P = 0.02). CONCLUSIONS: In this preliminary experimental study, kidney gene expression was profoundly different in animals that developed septic AKI as opposed to septic animals that did not. The biological functions of the genes differentially expressed support a role of inflammatory overstimulation coupled with metabolic and apoptotic molecular responses in early septic AKI. Cyclooxygenase-2 and angiotensin type 2 receptor-dependent downstream mechanisms appear fruitful targets for future mechanistic research.
1st Medical Department Faculty of Medicine in Pilsen Charles University Plzen Czech Republic
1st Medical Department Teaching Hospital alej Svobody 80 304 60 Plzen Czech Republic
Zobrazit více v PubMed
Uchino S, Kellum JA, Bellomo R, Doig GS, Morimatsu H, Morgera S, Schetz M, Tan I, Bouman C, Macedo E, Gibney N, Tolwani A, Ronco C; Beginning and Ending Supportive Therapy for the Kidney (BEST Kidney) Investigators. Acute renal failure in critically ill patients: a multinational, multicenter study. JAMA 2005; 294:813-818. PubMed
Wan L, Bagshaw SM, Langenberg C, Saotome T, May C, Bellomo R. Pathophysiology of septic acute kidney injury: what do we really know? Crit Care Med. 2008;36(4 Suppl):S198–S203. doi: 10.1097/CCM.0b013e318168ccd5. PubMed DOI
Benes J, Chvojka J, Sykora R, Radej J, Krouzecky A, Novak I, et al. Searching for mechanisms that matter in early septic acute kidney injury: an experimental study. Crit Care. 2011;15:R256. PubMed PMC
Zager RA, Johnson AC, Frostad KB. Acute hepatic ischemic-reperfusion injury induces a renal cortical “stress response,” renal “cytoresistance,” and an endotoxin hyperresponsive state. Am J Physiol Renal Physiol. 2014;307:F856–F868. doi: 10.1152/ajprenal.00378.2014. PubMed DOI PMC
El-Achkar TM, Huang X, Plotkin Z, Sandoval RM, Rhodes GJ, Dagher PC. Sepsis induces changes in the expression and distribution of Toll-like receptor 4 in the rat kidney. Am J Physiol Renal Physiol. 2006;290:F1034–F1043. doi: 10.1152/ajprenal.00414.2005. PubMed DOI
Bagshaw SM, George C, Bellomo R, ANZICS Database Management Committee Early acute kidney injury and sepsis: a multicentre evaluation. Crit Care. 2008;12:R47. doi: 10.1186/cc6863. PubMed DOI PMC
Murugan R, Karajala-Subramanyam V, Lee M, Yende S, Kong L, Carter M, Angus DC, Kellum JA; Genetic and Inflammatory Markers of Sepsis (GenIMS) Investigators. Acute kidney injury in non-severe pneumonia is associated with an increased immune response and lower survival. Kidney Int. 2010; 77: 527–535. PubMed PMC
Payen D, Lukaszewicz AC, Legrand M, Gayat E, Faivre V, Megarbane B, et al. A multicentre study of acute kidney injury in severe sepsis and septic shock: association with inflammatory phenotype and HLA genotype. PLoS One. 2012;7:e35838. PubMed PMC
Lerolle N, et al. Renal failure in septic shock: predictive value of Doppler-based renal arterial resistive index. Intensive Care Med. 2006;32:1553–1559. doi: 10.1007/s00134-006-0360-x. PubMed DOI
Prowle JR, Molan MP, Hornsey E, Bellomo R. Measurement of renal blood flow by phase-contrast magnetic resonance imaging during septic acute kidney injury: a pilot investigation. Crit Care med. 2012;40:1768–1776. doi: 10.1097/CCM.0b013e318246bd85. PubMed DOI
Hato T, El-Achkar TM, Dagher PC. Sisters in arms: myeloid and tubular epithelial cells shape renal innate immunity. Am J Physiol Renal Physiol. 2013;304:F1243–F1251. doi: 10.1152/ajprenal.00101.2013. PubMed DOI PMC
Chen J, John R, Richardson JA, Shelton JM, Zhou XJ, Wang Y, et al. Toll-like receptor 4 regulates early endothelial activation during ischemic acute kidney injury. Kidney Int. 2011;79:288–99. PubMed PMC
Gomez H, Ince C, De Backer D, Pickkers P, Payen D, Hotchkiss J, et al. A unified theory of sepsis-induced acute kidney injury: inflammation, microcirculatory dysfunction, bioenergetics, and the tubular cell adaptation to injury. Shock. 2014;41:3–11. PubMed PMC
Mudaliar H, Pollock C, Komala MG, Chadban S, Wu H, Panchapakesan U. The role of Toll-like receptor proteins (TLR) 2 and 4 in mediating inflammation in proximal tubules. Am J Physiol Renal Physiol. 2013;305:F143–F154. doi: 10.1152/ajprenal.00398.2012. PubMed DOI
Kalakeche R, Hato T, Rhodes G, Dunn KW, El-Achkar TM, Plotkin Z, et al. Endotoxin uptake by S1 proximal tubular segment causes oxidative stress in the downstream S2 segment. J Am Soc Nephrol. 2011;22:1505–16. PubMed PMC
Molitoris BA. Therapeutic translation in acute kidney injury: the epithelial/endothelial axis. J Clin Invest. 2014;124:2355–2363. doi: 10.1172/JCI72269. PubMed DOI PMC
El-Achkar TM, Plotkin Z, Marcic B, Dagher PC. Sepsis induces an increase in thick ascending limb Cox-2 that is TLR4 dependent. Am J Physiol Renal Physiol. 2007;293:F1187–F1196. doi: 10.1152/ajprenal.00217.2007. PubMed DOI
Hao CM, Breyer MD. Physiologic and pathophysiologic roles of lipid mediators in the kidney. Kidney Int. 2007;71:1105–1115. doi: 10.1038/sj.ki.5002192. PubMed DOI
Harris RC. An update on cyclooxygenase-2 expression and metabolites in the kidney. Curr Opin Nephrol Hypertens. 2008;17:64–69. doi: 10.1097/MNH.0b013e3282f1bb7d. PubMed DOI
Höcherl K, Schmidt C, Bucher M. COX-2 inhibition attenuates endotoxin-induced downregulation of organic anion transporters in the rat renal cortex. Kidney Int. 2009;75:373–380. doi: 10.1038/ki.2008.557. PubMed DOI
Tran M, Tam D, Bardia A, Bhasin M, Rowe GC, Kher A, et al. PGC-1α promotes recovery after acute kidney injury during systemic inflammation in mice. J Clin Invest. 2011;121:4003–14. PubMed PMC
Takasu O, Gaut JP, Watanabe E, To K, Fagley RE, Sato B, et al. Mechanisms of cardiac and renal dysfunction in patients dying of sepsis. Am J Respir Crit Care Med. 2013;187:509–17. PubMed PMC
Lerolle N, Nochy D, Guérot E, et al. Histopathology of septic shock induced acute kidney injury: apoptosis and leukocytic inflammation. Intensive Care Med. 2010;36:471–478. doi: 10.1007/s00134-009-1723-x. PubMed DOI
Langenberg C, Gobe G, Hood S, May CN, Bellomo R. Renal histopathology during experimental septic acute kidney injury and recovery. Crit Care Med. 2014;42:e58–e67. doi: 10.1097/CCM.0b013e3182a639da. PubMed DOI
Ruiz-Ortega M, Esteban V, Suzuki Y, Ruperez M, Mezzano S, Ardiles L, et al. Renal expression of angiotensin type 2 (AT2) receptors during kidney damage. Kidney Int Suppl. 2003;86:S21–6. PubMed
Gunaratnam L, Bonventre JV. HIF in kidney disease and development. J Am Soc Nephrol. 2009;20:1877–1887. doi: 10.1681/ASN.2008070804. PubMed DOI
Yang Q, Mattick JS, Orman MA, Nguyen TT, Ierapetritou MG, Berthiaume F, et al. Dynamics of hepatic gene expression profile in a rat cecal ligation and puncture model. J Surg Res. 2012;176:583–600. PubMed PMC
Grigoryev DN, Liu M, Hassoun HT, Cheadle C, Barnes KC, Rabb H. The local and systemic inflammatory transcriptome after acute kidney injury. J Am Soc Nephrol. 2012;19:547–558. doi: 10.1681/ASN.2007040469. PubMed DOI PMC