Structure of the effector-binding domain of the arabinose repressor AraR from Bacillus subtilis
Language English Country United States Media print-electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
Grant support
R01 GM053163
NIGMS NIH HHS - United States
PubMed
22281747
PubMed Central
PMC3337009
DOI
10.1107/s090744491105414x
PII: S090744491105414X
Knihovny.cz E-resources
- MeSH
- Arabinose metabolism MeSH
- Bacillus subtilis chemistry metabolism MeSH
- Bacterial Proteins chemistry metabolism MeSH
- Crystallography, X-Ray MeSH
- Models, Molecular MeSH
- Repressor Proteins chemistry metabolism MeSH
- Protein Structure, Tertiary MeSH
- Protein Binding MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Arabinose MeSH
- Bacterial Proteins MeSH
- Repressor Proteins MeSH
In Bacillus subtilis, the arabinose repressor AraR negatively controls the expression of genes in the metabolic pathway of arabinose-containing polysaccharides. The protein is composed of two domains of different phylogenetic origin and function: an N-terminal DNA-binding domain belonging to the GntR family and a C-terminal effector-binding domain that shows similarity to members of the GalR/LacI family. The crystal structure of the C-terminal effector-binding domain of AraR in complex with the effector L-arabinose has been determined at 2.2 Å resolution. The L-arabinose binding affinity was characterized by isothermal titration calorimetry and differential scanning fluorimetry; the K(d) value was 8.4 ± 0.4 µM. The effect of L-arabinose on the protein oligomeric state was investigated in solution and detailed analysis of the crystal identified a dimer organization which is distinctive from that of other members of the GalR/LacI family.
See more in PubMed
Betts, M. J. & Sternberg, M. J. (1999). Protein Eng. 12, 271–283. PubMed
Brünger, A. T. (1992). Nature (London), 355, 472–475. PubMed
Chen, V. B., Arendall, W. B., Headd, J. J., Keedy, D. A., Immormino, R. M., Kapral, G. J., Murray, L. W., Richardson, J. S. & Richardson, D. C. (2010). Acta Cryst. D66, 12–21. PubMed PMC
DeLano, W. L. (2002). PyMOL http://www.pymol.org.
Emsley, P. & Cowtan, K. (2004). Acta Cryst. D60, 2126–2132. PubMed
Ericsson, U. B., Hallberg, B. M., Detitta, G. T., Dekker, N. & Nordlund, P. (2006). Anal. Biochem. 357, 289–298. PubMed
Franco, I. S., Mota, L. J., Soares, C. M. & de Sá-Nogueira, I. (2006). J. Bacteriol. 188, 3024–3036. PubMed PMC
Franco, I. S., Mota, L. J., Soares, C. M. & de Sá-Nogueira, I. (2007). Nucleic Acids Res. 35, 4755–4766. PubMed PMC
Glasfeld, A., Koehler, A. N., Schumacher, M. A. & Brennan, R. G. (1999). J. Mol. Biol. 291, 347–361. PubMed
Haydon, D. J. & Guest, J. R. (1991). FEMS Microbiol. Lett. 63, 291–295. PubMed
Henkin, T. M. (1996). FEMS Microbiol. Lett. 135, 9–15. PubMed
Holm, L. & Sander, C. (1994). Proteins, 19, 165–173. PubMed
Huffman, J. L., Lu, F., Zalkin, H. & Brennan, R. G. (2002). Biochemistry, 41, 511–520. PubMed
Krissinel, E. & Henrick, K. (2005). CompLife 2005, edited by M. R. Berthold, R. Glen, K. Diederichs, O. Kohlbacher & I. Fischer, pp. 163–174. Berlin, Heidelberg: Springer-Verlag.
Landau, M., Mayrose, I., Rosenberg, Y., Glaser, F., Martz, E., Pupko, T. & Ben-Tal, N. (2005). Nucleic Acids Res. 33, W299–W302. PubMed PMC
Lo, M.-C., Aulabaugh, A., Jin, G., Cowling, R., Bard, J., Malamas, M. & Ellestad, G. (2004). Anal. Biochem. 332, 153–159. PubMed
Minor, W., Cymborowski, M., Otwinowski, Z. & Chruszcz, M. (2006). Acta Cryst. D62, 859–866. PubMed
Mota, L. J., Sarmento, L. M. & de Sá-Nogueira, I. (2001). J. Bacteriol. 183, 4190–4201. PubMed PMC
Mota, L. J., Tavares, P. & Sá-Nogueira, I. (1999). Mol. Microbiol. 33, 476–489. PubMed
Mowbray, S. L. & Björkman, A. J. (1999). J. Mol. Biol. 294, 487–499. PubMed
Murshudov, G. N., Skubák, P., Lebedev, A. A., Pannu, N. S., Steiner, R. A., Nicholls, R. A., Winn, M. D., Long, F. & Vagin, A. A. (2011). Acta Cryst. D67, 355–367. PubMed PMC
Pantoliano, M. W., Petrella, E. C., Kwasnoski, J. D., Lobanov, V. S., Myslik, J., Graf, E., Carver, T., Asel, E., Springer, B. A., Lane, P. & Salemme, F. R. (2001). J. Biomol. Screen. 6, 429–440. PubMed
Řezáčová, P., Kožíšek, M., Moy, S. F., Sieglová, I., Joachimiak, A., Machius, M. & Otwinowski, Z. (2008). Mol. Microbiol. 69, 895–910. PubMed PMC
Řezáčová, P., Krejčiříková, V., Borek, D., Moy, S. F., Joachimiak, A. & Otwinowski, Z. (2007). Proteins, 69, 679–682. PubMed PMC
Sá-Nogueira, I. & Mota, L. J. (1997). J. Bacteriol. 179, 1598–1608. PubMed PMC
Schumacher, M. A., Seidel, G., Hillen, W. & Brennan, R. G. (2007). J. Mol. Biol. 368, 1042–1050. PubMed
Stülke, J. & Hillen, W. (2000). Annu. Rev. Microbiol. 54, 849–880. PubMed
Swint-Kruse, L. & Matthews, K. S. (2009). Curr. Opin. Microbiol. 12, 129–137. PubMed PMC
Vagin, A. & Teplyakov, A. (2010). Acta Cryst. D66, 22–25. PubMed
Weickert, M. J. & Adhya, S. (1992). J. Biol. Chem. 267, 15869–15874. PubMed
Wilson, C. J., Zhan, H., Swint-Kruse, L. & Matthews, K. S. (2007). Biophys. Chem. 126, 94–105. PubMed
Winn, M. D., Isupov, M. N. & Murshudov, G. N. (2001). Acta Cryst. D57, 122–133. PubMed
Winn, M. D. et al. (2011). Acta Cryst. D67, 235–242. PubMed
Optimization of the crystallizability of a single-chain antibody fragment
PDB
3TB6