Variation of cholinesterase-based biosensor sensitivity to inhibition by organophosphate due to ionizing radiation
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium print-electronic
Typ dokumentu časopisecké články
PubMed
22346715
PubMed Central
PMC3274157
DOI
10.3390/s90705580
PII: s90705580
Knihovny.cz E-zdroje
- Klíčová slova
- acetylcholinesterase, biosensor, cholinesterase, nerve agents, organophosphate, paraoxon, radiation,
- Publikační typ
- časopisecké články MeSH
A cholinesterase based biosensor was constructed in order to assess the effects of ionizing radiation on exposed AChE. Although the primary objective of the experiment was to investigate the effect of ionizing radiation on the activity of the biosensor, no changes in cholinesterase activity were observed. Current provided by oxidation of thiocholine previously created from acetylthiocholine by enzyme catalyzed reaction was in a range 395-455 nA. No significant influence of radiation on AChE activity was found, despite the current variation. However, a surprising phenomenon was observed when a model organophosphate paraoxon was assayed. Irradiated biosensors seem to be more susceptible to the inhibitory effects of paraoxon. Control biosensors provided a 94 ± 5 nA current after exposure to 1 ppm paraoxon. The biosensors irradiated by a 5 kGy radiation dose and exposed to paraoxon provided a current of 49 ± 6 nA. Irradiation by doses ranging from 5 mGy to 100 kGy were investigated and the mentioned effect was confirmed at doses above 50 Gy. After the first promising experiments, biosensors irradiated by 5 kGy were used for calibration on paraoxon and compared with the control biosensors. Limits of detection 2.5 and 3.8 ppb were achieved for irradiated and non-irradiated biosensors respectively. The overall impact of this effect is discussed.
Zobrazit více v PubMed
De Schrijver A., De Mot R. Degradation of pesticides by actinomycetes. Crit. Rev. Microbiol. 1999;25:85–119. PubMed
Soltaninejad K., Abdollahi M. Current opinion on the science of organophosphate pesticides and toxic stress: a systematic review. Med. Sci. Monit. 2009;15:75–90. PubMed
Soltaninejad K., Shadnia S., Afkhami-Taghipour M., Saljooghi R., Mohammadirad A., Abdollahi M. Blood beta-glucuronidase as a suitable biomarker at acute axposure of severe organophosphorus poisoning in human. Hum. Exp. Toxicol. 2007;26:963–966. PubMed
Paudyal B.P. Organophosphorus poisoning. JNMA J. Nepal Med. Assoc. 2008;47:251–258. PubMed
Eddieston M., Buckley N.A., Eyer P., Dawson A.H. Medical management of acute organophosphorus pesticide self-poisoning. Lancet. 2008;37:597–607. PubMed PMC
Andreescu S., Marty J.L. Twenty years research in cholinesterase biosensors: from basic research to practical applications. Biomol. Eng. 2006;23:1–15. PubMed
Pohanka M., Musilek K., Kuca K. Progress of biosensors based on cholinesterase inhibition. Curr. Med. Chem. 2009;16:1790–1798. PubMed
Pohanka M., Kuca K., Jun D. Aflatoxin assay using an amperometric sensor strip and acetylcholinesterase as recognition element. Sens. Lett. 2008;6:450–453.
Pohanka M., Jun D., Kuca K. Amperometric biosensor for real time assay of organophosphates. Sensors. 2008;8:5303–5312. PubMed PMC
Pohanka M., Dobes P., Drtinova L., Kuca K. Nerve agents assay using cholinesterase based biosensor. Electroanalysis. 2009;21:1177–1182.
Flores F., Artigas J., Marty J.L., Valdes F. Development of an EnFET for the detection of organophosphorous and carbamate insecticides. Anal. Bioanal. Chem. 2003;376:476–480. PubMed
Cho D.H., Chung K., Park M.Y. Hydrogen ion-selective membrane electrodes based on alkydibenzylamines as neutral carriers. Talanta. 1998;47:815–821. PubMed
Imato T., Ishibashi N. Potentiometric butyrylcholine sensor for organophosphate pesticides. Biosens. Bioelectron. 1995;10:435–441. PubMed
Lin T.J., Huang K.T., Liu C.Y. Determination of organophosphorous pesticides by a novel biosensor based on localized surface plasmon resonance. Biosens. Bioelectron. 2006;22:513–518. PubMed
Wang M., Gu X., Zhang G., Zhang D., Zhu D. Convenient and continuous fluorometric assay method for acetylcholinesterase and inhibitor screening based on the aggregation-induced emission. Anal. Chem. 2009;81:4444–4449. PubMed
Wang M., Gu X., Zhang G., Zhang D., Zhu D. Continuous colorimetric assay for acetylcholinesterase and inhibitor screening with gold nanoparticles. Langmuir. 2009;25:2504–2507. PubMed
Adam V., Mikelova R., Hubalek J., Hanustiak P., Beklova M., Hodek P., Horna A., Trnkova L., Stiborova M., Zeman L., Kizek R. Utilizing of square wave voltammetry to detect flavonoids in the presence of human urine. Sensors. 2007;7:2402–2418. PubMed PMC
Krizkova S., Beklova M., Pikula J., Adam V., Horna A., Kizek R. Hazards of secondary bromadiolone intoxications evaluated using high-performance liquid chromatography with electrochemical detection. Sensors. 2007;7:1271–1286.
Supalkova V., Huska D., Diopan V., Hanustiak P., Zika O., Stejskal K., Baloun J., Pikula J., Havel L., Zehnalek J., Adam V., Trnkova L., Beklova M., Kizek R. Electroanalysis of plant thiols. Sensors. 2007;7:932–952.
Hildebrandt A., Ribas J., Bragos R., Marty J.L., Tresanchez M., Lacorte S. Development of a portable biosensor for screening neurotoxic agents in water samples. Talanta. 2008;75:1208–1213. PubMed
Pohanka M., Hrabinova M., Kuca K. Diagnosis of intoxication by the organophosphate Vx: comparison between an electrochemical sensor and Ellman’s photometric method. Sensors. 2008;8:5229–5237. PubMed PMC
Krokosz A., Szweda-Lewandowska Z. Changes in the activity of acetylcholinesterase and Na,K-ATPase in human erythrocytes irradiated with X-rays. Cell Mol. Biol. Lett. 2005;10:471–478. PubMed
Dimberg Y., Vazquez M., Soderstrom S., Ebendal T. Effects of X-irradiation on nerve growth factor in the developing mouse brain. Toxicol. Lett. 1997;90:35–43. PubMed
Wolff S. The adaptive response in radiobiology: evolving insights and implications. Environ. Health Perspect. 1998;106:277–283. PubMed PMC
Vakurov A., Simpson C.E., Daly C.L., Gibson T.D., Millner P.A. Acetylcholinesterase–based biosensor electgrodes for organophosphate pesticide detection. II. Immobilization and stabilization of acetylcholinesterase. Biosen. Bioelectron. 2005;20:2324–2329. PubMed
Sexton K., Hattis D. Assessing cumulative health risks from exposure to environmental mixtures – three fundamental questions. Environ. Health Perspect. 2007;115:825–832. PubMed PMC
Pohanka M., Jun D., Kuca K. Improvement of acetylcholinesterase based assay for organophosphates in way of identification by reactivators. Talanta. 2008;77:451–454. PubMed
Fukuto T.R. Mechanism of action of organophosphorus and carbamate insecticides. Environ. Health Perspect. 1990;87:245–254. PubMed PMC
Kovarik Z., Radic Z., Berman H.A., Simeon-Rudolf V., Reiner E., Taylor P. Acetylcholinesterase active centre and gorge conformations analysed by combinatorial mutations and enantiomeric phosphonates. Biochem. J. 2003;373:33–40. PubMed PMC
Fan F., You Z., Li Z., Cheng J., Tang Y., Tang Z. A butterfly effect: highly insecticidal resistance caused by only a conservative residue mutated of drosophila melanogaster acetylcholinesterase. J. Mol. Model. 2009 (In press). PubMed
Xu S., Wu A., Chen H., Xie Y., Xu Y., Zhang L., Li J., Zhang D. Production of novel recombinant drosophila melanogaster acetylcholinesterase for detection of organophosphate and carbamate insecticide residues. Biomol. Eng. 2007;24:253–261. PubMed
Sinko G., Calic M., Bosak A., Kovarik Z. Limitation of the Ellman method: cholinesterase activity measurement in the presence of oximes. Anal. Biochem. 2007;370:223–227. PubMed
Pohanka M., Kuca K., Jun D. Sensor system based on acetylcholinesterase in homogenous phase for analysis of paraoxon. Anal. Lett. 2008;41:2214–2223.
Pohanka M., Kuca K., Kassa J. New performance of biosensor technology for Alzheimer’s disease drugs: in vitro comparison of tacrine and 7-methoxytacrine. Neroendocrinol. Lett. 2008;29:755–758. PubMed
Weik M., Ravelli R.B.G., Kryger G., McSweeney S., Raves M.L., Harel M., Gros P., Silman I., Kroon J., Sussman J.L. Specific chemical and structural damage to proteins produced by synchrotron radiation. Proc. Natl. Acad. Sci. USA. 2000;97:623–628. PubMed PMC