MiR-34b is associated with clinical outcome in triple-negative breast cancer patients
Language English Country Great Britain, England Media electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
22439831
PubMed Central
PMC3349474
DOI
10.1186/1746-1596-7-31
PII: 1746-1596-7-31
Knihovny.cz E-resources
- MeSH
- Adult MeSH
- Kaplan-Meier Estimate MeSH
- Real-Time Polymerase Chain Reaction MeSH
- Middle Aged MeSH
- Humans MeSH
- MicroRNAs analysis genetics MeSH
- Biomarkers, Tumor genetics MeSH
- Breast Neoplasms genetics mortality pathology MeSH
- Reverse Transcriptase Polymerase Chain Reaction MeSH
- Disease-Free Survival MeSH
- Prognosis MeSH
- Proportional Hazards Models MeSH
- Receptor, ErbB-2 biosynthesis genetics MeSH
- Receptors, Estrogen biosynthesis genetics MeSH
- Receptors, Progesterone biosynthesis genetics MeSH
- Gene Expression Regulation, Neoplastic MeSH
- Aged MeSH
- Check Tag
- Adult MeSH
- Middle Aged MeSH
- Humans MeSH
- Aged MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- MicroRNAs MeSH
- MIRN34 microRNA, human MeSH Browser
- Biomarkers, Tumor MeSH
- Receptor, ErbB-2 MeSH
- Receptors, Estrogen MeSH
- Receptors, Progesterone MeSH
BACKGROUND: Breast cancer is the most common malignancy with the highest incidence rates among women worldwide. Triple-negative breast cancer (TNBC) represents the major phenotype of basal-like molecular subtype of breast cancer, characterized by higher incidence in young women and a very poor prognosis. MicroRNAs (miRNAs) are small non-coding RNAs playing significant role in the pathogenesis of many cancers including breast cancer. Therefore, miRNAs are also potential prognostic and/or predictive biomarkers in triple-negative breast cancer patients. METHODS: Thirty-nine TNBC patients with available formalin-fixed paraffin-embedded (FFPE) tissues were enrolled in the study. MiR-34a, miR-34b, and miR-34c were analyzed using qRT-PCR and correlated to clinico-pathological features of TNBC patients. RESULTS: Expression levels of miR-34b significantly correlate with disease free survival (DFS) (p = 0.0020, log-rank test) and overall survival (OS) (p = 0.0008, log-rank test) of TNBC patients. No other significant associations between miR-34a, miR-34b, and miR-34c with available clinical pathological data were observed. CONCLUSIONS: MiR-34b expression negatively correlates with disease free survival and overall survival in TNBC patients. Thus, miR-34b may present a new promising prognostic biomarker in TNBC patients, but independent validations are necessary.
See more in PubMed
Bertos NR, Park M. Breast cancer - one term, many entities? J Clin Invest. 2011;121:3789–3796. doi: 10.1172/JCI57100. PubMed DOI PMC
Voduc KD, Cheang MC, Tyldesley S, Gelmon K, Nielsen TO, Kennecke H. Breast cancer subtypes and the risk of local and regional relapse. J Clin Oncol. 2010;28:1684–1691. doi: 10.1200/JCO.2009.24.9284. PubMed DOI
Lee DS, Kim SH, Suh YJ, Kim S, Kim HK, Shim BY. Clinical implication of p53 overexpression in breast cancer patients younger than 50 years with a triple-negative subtype who undergo a modified radical mastectomy. Jpn J Clin Oncol. 2011;41:854–866. doi: 10.1093/jjco/hyr066. PubMed DOI
Curigliano G, Goldhirsch A. The triple-negative subtype: new ideas for the poorest prognosis breast cancer. J Natl Cancer Inst Monogr. 2011;2011:108–110. doi: 10.1093/jncimonographs/lgr038. PubMed DOI
Gluz O, Liedtke C, Gottschalk N, Pusztai L, Nitz U, Harbeck N. Triple-negative breast cancer-current status and future directions. Ann Oncol. 2009;20:1913–1927. doi: 10.1093/annonc/mdp492. PubMed DOI
Fornier M, Fumoleau P. The Paradox of Triple Negative Breast Cancer: Novel Approaches to Treatment. Breast J. 2012;18:41–51. doi: 10.1111/j.1524-4741.2011.01175.x. PubMed DOI
Irshad S, Ellis P, Tutt A. Molecular heterogeneity of triple-negative breast cancer and its clinical implications. Curr Opin Oncol. 2011;23:566–577. doi: 10.1097/CCO.0b013e32834bf8ae. PubMed DOI
Garcia AI, Buisson M, Bertrand P, Rimokh R, Rouleau E, Lopez BS, Lidereau R, Mikaelian I, Mazoyer S. Down-regulation of BRCA1 expression by miR-146a and miR146b-5p in triple negative sporadic breast cancers. EMBO Mol Med. 2011;3:279–290. doi: 10.1002/emmm.201100136. PubMed DOI PMC
Radojicic J, Zaravinos A, Vrekoussis T, Kafousi M, Spandidos DA, Stathopoulos EN. MicroRNA expression analysis in triple-negative (ER, PR and Her2/neu) breast cancer. Cell Cycle. 2011;10:507–517. doi: 10.4161/cc.10.3.14754. PubMed DOI
Yamakuchi M, Lowenstein CJ. MiR-34, SIRT1 and p53: the feedback loop. Cell Cycle. 2009;8:712–715. doi: 10.4161/cc.8.5.7753. PubMed DOI
He X, He L, Hannon GJ. The guardian's little helper: microRNAs in the p53 tumor suppressor network. Cancer Res. 2007;67:11099–11101. doi: 10.1158/0008-5472.CAN-07-2672. PubMed DOI
He L, He X, Lim LP, de Stanchina E, Xuan Z, Liang Y, Xue W, Zender L, Magnus J, Ridzon D. et al.A microRNA component of the p53 tumour suppressor network. Nature. 2007;447:1130–1134. doi: 10.1038/nature05939. PubMed DOI PMC
Corney DC, Hwang CI, Matoso A, Vogt M, Flesken-Nikitin A, Godwin AK, Kamat AA, Sood AK, Ellenson LH, Hermeking H, Nikitin AY. Frequent downregulation of miR-34 family in human ovarian cancers. Clin Cancer Res. 2010;16:1119–1128. doi: 10.1158/1078-0432.CCR-09-2642. PubMed DOI PMC
Hiroki E, Suzuki F, Akahira JI, Nagase S, Ito K, Sugawara J, Miki Y, Suzuki T, Sasano H, Yaegashi N. MicroRNA-34b functions as a potential tumor suppressor in endometrial serous adenocarcinoma. Int J Cancer. 2012. in press . PubMed
Lee YM, Lee JY, Ho CC, Hong QS, Yu SL, Tzeng CR, Yang PC, Chen HW. MicroRNA 34b as a tumor suppressor in estrogen-dependent growth of breast cancer cells. Breast Cancer Res. 2011;13:R116. doi: 10.1186/bcr3059. PubMed DOI PMC
Katada T, Ishiguro H, Kuwabara Y, Kimura M, Mitui A, Mori Y, Ogawa R, Harata K, Fujii Y. microRNA expression profile in undifferentiated gastric cancer. Int J Oncol. 2009;34:537–542. PubMed
Juan D, Alexe G, Antes T, Liu H, Madabhushi A, Delisi C, Ganesan S, Bhanot G, Liou LS. Identification of a microRNA panel for clear-cell kidney cancer. Urology. 2010;75:835–841. doi: 10.1016/j.urology.2009.10.033. PubMed DOI
Jung M, Mollenkopf HJ, Grimm C, Wagner I, Albrecht M, Waller T, Pilarsky C, Johannsen M, Stephan C, Lehrach H. et al.MicroRNA profiling of clear cell renal cell cancer identifies a robust signature to define renal malignancy. J Cell Mol Med. 2009;13:3918–3928. doi: 10.1111/j.1582-4934.2009.00705.x. PubMed DOI PMC
Cleator S, Heller W, Coombes RC. Triple-negative breast cancer: therapeutic options. Lancet Oncol. 2007;8:235–244. doi: 10.1016/S1470-2045(07)70074-8. PubMed DOI
Chu D, Zhang Z, Zhou Y, Wang W, Li Y, Zhang H, Dong G, Zhao Q, Ji G. Notch1 and Notch2 have opposite prognostic effects on patients with colorectal cancer. Ann Oncol. 2011;22:2440–2447. doi: 10.1093/annonc/mdq776. PubMed DOI
O'Neill CF, Urs S, Cinelli C, Lincoln A, Nadeau RJ, Leon R, Toher J, Mouta-Bellum C, Friesel RE, Liaw L. Notch2 signaling induces apoptosis and inhibits human MDA-MB231 xenograft growth. Am J Pathol. 2007;171:1023–1036. doi: 10.2353/ajpath.2007.061029. PubMed DOI PMC
Peurala H, Greco D, Heikkinen T, Kaur S, Bartkova J, Jamshidi M, Aittomaki K, Heikkila P, Bartek J, Blomqvist C. et al.MiR-34a expression has an effect for lower risk of metastasis and associates with expression patterns predicting clinical outcome in breast cancer. PLoS One. 2011;6:e26122. doi: 10.1371/journal.pone.0026122. PubMed DOI PMC
Dutta KK, Zhong Y, Liu YT, Yamada T, Akatsuka S, Hu Q, Yoshihara M, Ohara H, Takehashi M, Shinohara T. et al.Association of microRNA-34a overexpression with proliferation is cell type-dependent. Cancer Sci. 2007;98:1845–1852. doi: 10.1111/j.1349-7006.2007.00619.x. PubMed DOI
Christoffersen NR, Shalgi R, Frankel LB, Leucci E, Lees M, Klausen M, Pilpel Y, Nielsen FC, Oren M, Lund AH. p53-independent upregulation of miR-34a during oncogene-induced senescence represses MYC. Cell Death Differ. 2010;17:236–245. doi: 10.1038/cdd.2009.109. PubMed DOI